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Abstract

The research presented here examines topological drawing, a new mode of constructing and

interacting with mathematical objects in three-dimensional space. In topological drawing,

issues such as adjacency and connectedness, which are topological in nature, take precedence

over purely geometric issues. Because the domain of application is mathematics, topological

drawing is also concerned with the correct representation and display of these objects on

a computer. By correctness we mean that the essential topological features of objects are

maintained during interaction.

We have chosen to limit the scope of topological drawing to knot theory, a domain

that consists essentially of one class of object (embedded circles in three-dimensional space)

yet is rich enough to contain a wide variety of difficult problems of research interest. In

knot theory, two embedded circles (knots) are considered equivalent if one may be smoothly

deformed into the other without any cuts or self-intersections. This notion of equivalence

may be thought of as the heart of knot theory.

We present methods for the computer construction and interactive manipulation of

a wide variety of knots. Many of these constructions would be difficult using standard

computer-aided drawing methods. Interactive techniques allow for knot simplification un-

der topological constraints from complicated conformations to simpler embeddings. These

methods have proven useful in the investigation of the knot equivalence problem.

As a further test of its utility, topological drawing has been used for several knot

theoretical applications. The first of these involves finding the stick-number of a knot (the

fewest number of straight sticks needed to form the knot). A second application is to the

relaxation of knots under a physically-based knot energy (the symmetric energy) that we find

effectively simplifies knots to configurations approaching their “canonical form”. Finally, our
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methods have proven useful in the visualization of a class of knots that arise in a study of

three-manifold topology. These knots often have complex descriptions (for example, as a

huge braid word), but may be simplified greatly through the use of interactive topological

drawing. Here, an expert user relies on the visualization in order to steer the computation

in a direction that will often significantly improve performance.
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Chapter 1

Introduction

A fundamental issue in mathematics is determining when two objects are equivalent. This

problem may be approached from many different angles and refined to an almost unlimited

degree. One field of mathematics where questions of this sort abound is topology. Topological

notions of equivalence are based on fundamental, proto-geometric ideas such as adjacency

and connectedness. Two objects may have the same “shape” in a topological sense even

if they appear at first glance to be quite different. For example, consider the objects in

Figure 1.1, where the two curves represent loops of string in three dimensional space. Are

Figure 1.1: Two objects with the same shape.

these shapes equivalent? Here, equivalence is meant in a broad sense: two such shapes are

equivalent if and only if one may be continuously deformed into the other without any cuts,

self-intersections, or singular points in the objects. The material is assumed to be ideal and

infinitely deformable. Surprisingly, even this apparently simple case of two loops in space

has proven to be an extremely difficult problem. The sub-branch of topology concerned with
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problems of this sort, knot theory, has developed over the past century a powerful array of

techniques that have gone a long way in addressing such equivalence problems. Although

these matters have been resolved in principle, i.e. the problem is known to be decidable,

the solutions suffer from being highly impractical (in a computational sense) even for simple

examples.

Let us suppose that we know the above two shapes are equivalent in the sense de-

scribed (they are). How does one go about demonstrating this equivalence, say by exhibiting

a deformation that takes one shape into the other? In knot theory, this is a computationally

difficult problem. This fact may appear somewhat surprising. In contrast, in the field of com-

puter graphics, impressive claims are occasionally made for what is known as the “morphing”

problem (exhibiting a smooth transition or metamorphosis between two different objects).

Although most researchers in the area are well aware of the difficulties of morphing between

two arbitrary three-dimensional objects [Hug92], DeCarlo and Gallier [DG96] point out that

many do not take topology seriously. The fact that all the power of modern mathematics

is yet unable to effectively “handle” cases such as Figure 1.1 indicates that if we do take

topology seriously, we are essentially stuck at the level of one of the simplest imaginable

problems in 3D morphing.

In fact the problem is even more difficult than we have so far indicated because it

contains an additional subtlety. It is possible to create a smooth transition between the

objects in Figure 1.1 as we shall see in Chapter 7. However, if a small local change is made

to the initial object to arrive at the new object shown on the right in Figure 1.2 then the

smooth transition to a circle is no longer possible. This demonstrates that it is necessary

to take the global topology of an object into account, not only to generate a transition into

another object, but even to determine whether such a transition is possible at all.

1.1 Topological drawing

The discussion above suggests that a new approach must be taken where issues of a topological

nature take precedence over purely geometric ones. Topological drawing focuses on notions

such as adjacency, connectedness, and the topological character of the embedding or place-

ment of an object in space; it is relatively unconcerned with precise geometrical placement.
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Figure 1.2: Two objects with a different shape.

Dennis Roseman [Ros92a, Ros92b] was probably the first person to use the term topological

drawing with reference to a mathematician’s drawing tool. The requirements of such a tool

are somewhat more stringent than ordinary drawing systems, where issues of correctness are

not generally a great concern.1 Roseman’s design goals are fairly broad [Ros92a] and target

mathematical constructs considerably more complicated than anything of concern to this

thesis. We will limit the scope of our study by selecting only a subset of topological drawing.

The arena chosen for demonstrating topological drawing is knot theory, for several

reasons. First of all, knot theory can be considered to be the simplest, nontrivial exam-

ple of a placement problem [Fox62]. Other placement problems (motion control in robotics,

human body movement) inherit some of the difficulties already found in knot theory. Sec-

ondly, although knot theory is a beautiful branch of modern mathematics and can certainly

stand on its own merits, connections are increasingly being found with other sciences, such

as physics, chemistry and biology. Some of the applications of topological drawing explored

in this thesis are directly targeted in these directions. A final reason for studying knots is

the intuitive nature of knot theory. Knots are something most of us work with everyday and

they have practical, non-mathematical applications [Ash44, GH52, Lee74, vdG92] as well

as a rich cultural history [Con92, vdG93, TvdG96]. It is intriguing that many problems in

knot theory are easily phrased, yet they have difficult solutions or may even be unsolvable

in practice. Another aspect of knots is their long and distinguished presence in the deco-

rative arts [Bai73, Bac81, Bai86, Mee91], dating back well over a millennium. One look at
1This is true to a limited extent, of course. In applications that rely on computer aided design and

manufacturing, correctness can often be a life and death matter. However, from a mathematical point of view
these systems cannot be regarded as “rigourous”.
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the Lindisfarne Gospels, a medieval illuminated manuscript from Northumbria [Bac81], is

a humbling experience for any would-be drawer of knots because it indicates that there is

almost unlimited room for improvement over any existing computer-aided system.

1.2 Mathematical visualization

In addition to providing a foundation for topological drawing, Roseman [Ros95] also outlines

a number of principles that apply to any mathematical visualization system. One impor-

tant principle is the difference between display and visualization. Essentially, the difference

lies between simply creating a picture (display) and allowing the viewer to form a mental

construct (visualization) of the object being studied. Roseman provides an apt quote from

Gibson [Gib79]:

“A surface can be seen; a plane can only be visualized.”

A mathematical plane is an abstract concept that cannot be “seen” but must be imagined by

combining a visual impression together with an intellectual understanding of the mathematics

(in this case the mathematics of two-manifolds). A display can be considered a visualization

if it aids in this understanding.

In this thesis we will not be overly concerned with the philosophical issues of math-

ematical visualization. It is hoped that the reader will agree that the images appearing

here are indeed visualizations and not merely “messy displays”. For greater insight on the

matter of mathematical visualization, the reader would be advised to seek out the paper by

Roseman [Ros95] and the references it contains. Other excellent sources are the books by

Hilbert and Cohn-Vossen [HCV52] or Reichenbach [Rei57]. The collection of articles edited

by Brisson [Bri78b] are “early” works in the field of mathematical visualization by computer.

1.3 Contributions of the thesis

“Your work is interesting; it’s not computer graphics, but it’s interesting.”

— Critique of the thesis work by a famous computer graphics researcher

The thesis research, combining both topological drawing and mathematical visual-

ization, has resulted in the creation of useful and powerful techniques for the exploration
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of numerous problems in mathematical knot theory and related fields, such as the physics

of knots, DNA biology, and topological chemistry. This thesis is novel in the sense that

it is concerned with both the development of the computer aided visualization techniques

themselves, a domain within the bounds of computer science, as well as the application

of those techniques to areas outside of traditional computer science. The vehicle for this

exploration has been the computer program KnotPlot, written by the author.

The remainder of this section highlights the scientific contributions of the thesis work

to the areas of study in computer science (primarily computer graphics) and mathematics.

In addition to these “main-stream” disciplines, the thesis research has also found artistic

applications, some of them quite far removed from computer science or mathematics.

1.3.1 Computer graphics

Despite the above quoted comment, this thesis does contribute to computer graphics in

several important ways. The first of these contributions concerns the issue of correctness.

Computer graphics is a field that, for good or for ill (depending on one’s point of view),

has been characterized by the notion that “if it looks good then it must be right”. This

thesis maintains that for certain applications it is important to go beyond this. That is, it is

necessary to produce pictures that are provably correct renditions of what they purport to

be. An analogy may be drawn here with symbolic algebra systems such as Maple [Mon96]

and Mathematica [Wol91], which are increasingly used in mathematics research. Experience

in their use is now a standard part of a mathematician’s training at many universities. Issues

of correctness for symbolic mathematics are probably somewhat more severe than we will

find necessary in topological drawing, largely because of the vast number of (real world)

applications that depend on this correctness.

In a similar vein, there has been some neglect of correctness issues when modelling

interactions between computer generated objects. For example, interpenetrating or self-

intersecting objects are common occurrences in computer animations. Generally this is

not a problem because the deviations from correctness usually cannot be seen during the

animation, and they in no way affect the visual quality of the finished product. In contrast,

this thesis is concerned with objects that have an existence as pure mathematical entities;

if the results of manipulation or interaction are to be believed, it is essential that they be
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provably correct. This approach is similar to interactive, physically-based modelling systems

for proteins [Sur92b, Sur92a], where correctness to the underlying biochemical reality is

imperative.

On the other hand, it is important not to overstate these issues. Even if a claim

of correctness for a software system is made, mathematicians will still check the results

using other methods, assuming such a method is available. The reason for this is simple: a

software implementation is exceedingly difficult to verify absolutely (i.e. one that solves non-

trivial problems of actual complexity). Also, the internal structure of complicated software

is usually not amenable to inspection to the same degree as a mathematical proof on paper.

There is always the risk of error. Software designers can do their best to reduce the risk

of error to a sufficiently low level so that users will have a degree of faith in the system.

If the system is too complicated to verify, or if a mathematical proof relies too heavily on

computerized methods, a substantial fraction of mathematicians may find it takes less faith

to simply believe the theorem outright than it does to believe the proof.2

Finally, we make the case that topological drawing is a powerful and novel method for

computer assisted modelling. Although apparently similar work has appeared before [FRC92],

the applications were rather simple and resulted in models that could have been easily de-

signed with more traditional means. More sophisticated surface modelling tools, such as

Welch’s “topological putty” [WW92, Wel94] and other variational modelling techniques [MS92],

are not topological drawing in the sense meant in this thesis, as their intent is to be geometric

modelling tools. That is, the user has in mind a specific geometric form and wishes to use the

system to manipulate the surface to satisfy imposed geometric constraints. With topological

drawing in our sense, the user gives up all (or almost all) control over the geometric place-

ment. Rather than having a specific design goal as in variational modelling, in topological

drawing the resulting surface is a side effect of a simpler underlying mathematical object,

and is essentially arbitrary. That it may prove useful in creating complex and unusual surface

models (see the examples in Chapter 8) is a pleasant outcome, but not the primary objective.
2A case in point being Appel & Haken’s proof of the four colour theorem [AH89].
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1.3.2 Mathematics

While the mathematical content of this thesis is elementary compared to the state of the art

in mathematics research, mathematicians (knot theorists) can benefit from the interactive

techniques presented here. Part of this is empowering them to be able to construct, manip-

ulate and transform their objects of study easily. Methods for topological drawing can be

used by mathematicians as an aid in their research. The computer system acts as a book-

keeping and consistency checking device. Some operations and calculations formerly done by

hand may now be performed easily by computer. This is similar to other work in topology

that uses computers to simplify the complexity of calculations [Rav89]. It is important to

emphasize that intelligent intervention by persons with some understanding of the subject

area is often crucial to the success of such systems.

An important theme that recurs throughout this thesis is the quest for a canonical

form or optimal shape for knots. This topic is of considerable theoretical interest [O’H91,

Sim94, FH92, KS94, BSS98a] at the present time, with close ties to both physics [Mof92a,

Sch92, LS94, BSS98a] and biology [Sum85, KBM+96, KOP+97]. In these approaches, the

canonical form is considered to be one that minimizes some energy functional of the knot,

assuming that such a minimum exists (and that it is unique). Depending on the energy

functional chosen, different “canonical forms” may result. There is not universal agreement

on what constitutes a canonical form for knots (with one or two exceptions). Each of the

energy functionals studied by researchers has its merits. In this thesis, we will examine only

a small number of these energy functionals, however, the techniques developed here make it

possible for other researchers to investigate new methods or formalisms.

In addition to finding canonical form, research presented in this thesis has focussed on

other open problems in knot theory, such as computing the stick number of a knot [Ran94,

Mei96, ABGW97] or the problem of knot recognition (the equivalence problem that opened

this chapter). Our results compare well to similar work in these areas [Mei96, KS94, LS94,

GHK97]. For finding stick numbers, our method is somewhat of a “brute-force” approach

in comparison to the work of Meissen [Mei96], however, the work load is transferred to

the computer rather than the human. The second of these areas, that of knot recognition,

might be considered a subset of the canonical form problem; i.e. if the canonical form of a
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knot can be found, then all we need to do is to compare the canonical forms of two knots

and see if they’re the same. We have grouped it here as a separate problem because some

of our methods step outside the energy-based approach. They take advantage of the fact

that we are “doing topology” and not physics; therefore operations can be performed that

would be “illegal” in a physically-based context. This may make these methods seem ad

hoc in comparison to the sound theoretical basis of, for example, the work of Kusner and

Sullivan [KS94]. We defend our position by saying that if the problem of knot recognition

is to be computationally addressed, then all mathematically possible techniques should be

used, and not just those that have some justification in a specific physical model.

The mathematics literature contains numerous examples (of which [Fen89, FR86] is

a sample) of classes of mathematical objects that have never been interactively displayed on

a graphics workstation. It has been shown that useful information can be extracted from

such exercises in certain cases [KBBL86, MMHB93, JS94], or at least such visualizations can

contribute to the understanding of the mathematics involved. To this end, the thesis research

has been useful in the visualization of a non-trivial theorem in topology [Sed96] as well as

in the visualization of knots related to a census of hyperbolic three-manifolds [Dea97]. The

latter case was a particularly good test of our methods. Interactive manipulation provided

guided relaxation of complicated knots to simpler forms under topological constraints.

Finally, the thesis work also provides powerful tools for many practical applications

in knot theory; i.e. the “day-to-day” tasks. Mathematicians are able to create complex

examples of many types of knots easily and interactively. Extensive support is provided

for the production of high quality illustrations of these examples. These illustrations have

appeared in several publications [Sch91, Wu92, Sch95, KBM+96, MSS97, Dea97, Sch97a,

KG97, KOP+97, CDW98].

1.3.3 Art and design

Work with the mathematical knot visualization program KnotPlot (see Chapter 4 and

[Sch97b] for detailed information) has attracted the interest of both artists and non-artists

for purely aesthetic reasons [Bot94, Gib94, HBK+94, New96]. While such applications may

appear at first glance to be somewhat outside the scope of a thesis in computer science, they

are a central driving force behind the work described herein. Many mathematicians (as well
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as other scientists) are motivated by an aesthetic appreciation for their work: “Mathematics

is the finest of the fine arts” [Lan85]. The methods of topological drawing with automatic

refinement have proven useful in generative design. These applications are in the same spirit

as contemporary developments in “mathematical art”, which has only recently incorporated

more sophisticated mathematical content [FC92, Cox92, Nol94].

1.4 Overview of the thesis

A brief history and review of mathematical visualization is given in Chapter 2. Chapter 3

contains the background in knot theory relevant to understanding the problems addressed

in the thesis. It is of necessity a cursory overview, as the field is vast and ever expanding.

Included in Chapter 3 are the definitions of concepts in knot theory that will be discussed

in later sections of the thesis as well as a survey of research done by others in the field of

knot relaxation, a key area addressed by this thesis. Chapter 4 introduces KnotPlot, our

vehicle for exploration of topological drawing. Most of KnotPlot’s features are deferred to

later chapters; Chapter 4 provides a general overview of the system and various issues not

directly related to topological drawing, such as graphical display, topological and geometrical

calculations, and the construction and display of higher-dimensional objects.

Chapters 5 and 6 are concerned with providing initial embeddings of knots and links

using a number of different techniques. Chapter 5 presents a large array of methods for

the creation of knots and links. These methods are designed to interface readily with each

other; often several simple techniques combined can yield a non-trivial result. The technique

described in Chapter 6 is somewhat different. It addresses one specific problem, that of

constructing an embedding of a knot given an encoding (in the form of a list of integers)

of a diagram of the knot. The two chapters are complementary in some ways, Chapter 6

providing an alternative to the main approaches used in the thesis. The methods discussed in

Chapters 5 and 6 often create embeddings that are rough and “unpolished”. How these are

improved to an acceptable final form is the subject of Chapter 7, which discusses topological

refinement, both automatic and interactive.

Chapter 8 examines applications of topological drawing to research problems in knot

theory. A summary and suggestions for future work concludes the thesis in Chapter 9.

9



There are a few stylistic conventions used in this thesis that should be noted at this

point. Citations of literature earlier than 1900 are indicated by placing a bar over the year

number. Thus, Tait’s 1876 paper “On Knots” is cited as [Tai76]. Two simple theorems

appear in the thesis, the ends of their proofs are indicated by the symbolr.
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Chapter 2

Mathematical visualization

This chapter is a general review of previous work in mathematical visualization. To be fair,

most of modern mathematics can be considered mathematical visualization. Mathematicians

are experts at communicating subtle ideas of great complexity. Here we will focus on work

that is primarily graphical in nature, especially if it involves visualization with the aid of

a computer. Also in this chapter is a brief overview of interaction in 3D and 4D and the

specific problems associated with the visualization of objects in higher dimensions.

2.1 Mathematical visualization in the traditional media

As we have stated, if we consider diagrams acting as visual aids, then almost any mathemat-

ical paper might be considered a form of mathematical visualization. To find examples we

might go back as far as Gauss, Euler, or even Euclid. However, generally these diagrams are

not intrinsic to the proof of theorems; i.e. the diagrams could be deleted without any effect

on the correctness of the results. It seems more appropriate therefore to limit the scope of

mathematical visualization to be those areas where the interesting features of the study are

primarily visual. In this stronger sense, mathematical visualization started in this century

when mathematicians began to take special efforts to convey their ideas in a highly visual

manner. One of the early works using this approach is the 1932 German classic Anschauliche

Geometrie by David Hilbert and S. Cohn-Vossen, available in English translation as Geome-

try and the Imagination [HCV52]. This book is remarkable for the quality of insight and also

for its incredible diagrams, mostly hand drawn and (obviously) predating the computer era.
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These diagrams are useful to current mathematical illustrators as examples of good form in

depicting a variety of mathematical objects.

The Hypergraphics symposium was held in 1978 and brought together artists, ar-

chitects, mathematicians, and computer programmers in order to share insights on higher-

dimensional geometry and its graphical representation. The proceedings, published as a

book [Bri78a], contain a number of interesting reflections on the visualization of higher

dimensional objects [Bri78b, Nol78, BS78] such as hyper-cubes and also an impossible 4D il-

lusion constructed by Scott Kim [Kim78].

Several books have been published in the past decade that are superb examples of

mathematical visualization. Perhaps the best of these is A Topological Picturebook, George

Francis’ beautiful book [Fra87] on many different aspects of topology (other work by Francis is

equally impressive, for example [FC92]). Most of the illustrations are hand-drawn diagrams

of 3D objects, but he does include a chapter on higher-dimensional entities such as the

projective plane. Francis is an expert at drawing Seifert surfaces. These are orientable

surfaces that span a knot (i.e. they have the knot as a boundary [Rol76, Ada94, Mur96]).

Equally beautiful, but intended for a more general audience is Thomas Banchoff’s recent

book Beyond the Third Dimension [Ban90, BC92], which popularizes some mathematical

concepts and contains numerous high quality illustrations of 4D objects.

As was discussed in Chapter 1, a visualization goes beyond mere display if it serves

to elucidate the concept in mathematics that it is depicting. The paper by Hart, Francis,

and Kauffman [HFK94] provides an effective visualization of quaternion algebra and its

relationship to rotations in 3D. Particularly interesting is the illustration of the counter-

intuitive “Dirac string trick” (also known as the “belt trick” [MTW73, Han89, Kau91]). One

feature of the quaternion demonstrator is that a person can “try it at home” (see [Kau91] to

find out how to make one).

2.2 Computer systems for mathematical visualization

This section discusses software specifically designed to be general purpose mathematical vi-

sualization systems. Much of this work has come out of the Geometry Center (funded by the

U.S. National Science Foundation), associated with the University of Minnesota. Fortunately
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for researchers much of this software is free, and source code is often available.

An early attempt at producing a comprehensive mathematical visualization package

was undertaken by David Dobkin’s group at Princeton. They produced Salem [DNT90,

DNT91], a viewer for mathematical objects in 3D. These objects are all constructed of sets

of points (vertices) and polygons. From these primitives, Salem could construct higher-level

objects, such as polyhedra (i.e. the named polyhedra with regular faces [Joh66, Zal69]), tori

with arbitrary numbers of holes, convex hulls of point sets, and torus knots. Salem came

packaged with a well-designed interface to the underlying UNIX operating system, providing

both direct access to the file system, as well as an ability to create user-defined clients, which

could then be used to generate arbitrary objects. Salem provided a full set of commands

for object and view transformation, some of it under mouse control. Perhaps the most

interesting aspect of Salem was its ability to navigate through elliptic or hyperbolic space

and to illuminate surfaces there.

Perhaps the premier mathematical visualization software package anywhere is the

Geometry Center’s GeomView [PLM93]. GeomView, like Salem, can display objects in

spherical or hyperbolic space. GeomView has most of the other features of Salem (in some

ways GeomView might be considered to be a successor to Salem). GeomView is also freely

available from the Geometry Center. As a result it is widely used by many geometers,

physicists, and other people for many visualization tasks.

Finally, a claim could be made for the use of the general purpose systems Maple [Mon96]

and Mathematica [Wol91] in mathematical visualization. However, these systems are not re-

ally mathematical visualization packages in the same sense as Salem or GeomView, coming

as they do with little or no “knowledge” of geometry or topology. Also, neither system allows

for interactive manipulation of mathematical objects.

2.3 Film and video

One of the first films attempting to illustrate a non-trivial theorem in mathematics was

Nelson Max’s 1977 film Turning a Sphere Inside Out [Max77]. The theorem was originally

due to Smale and proves that an ordinary two-sphere (such as the surface of the Earth) can

be turned “inside out” (everted) in a smooth way (see the article by Phillips [Phi66] for a
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readable account). Obviously, if the smoothness restriction is dropped, it is simple to turn

a sphere inside out: simply grab opposite points of the sphere and pull it through itself. At

some point this method will form a “crease”, for example along the equator of the sphere.

Smale’s proof shows that there exists a smooth eversion of the sphere; i.e. one without creases.

In order to avoid creases, the sphere must be subject to amazingly complicated contortions.

Unfortunately, the original film by Max is not readily available, but the reader is urged

to consult the earlier article by Phillips [Phi66] in Scientific American which, although it

illustrates a different proof, gives an idea of the intricacies involved. Recently a team at the

Geometry Center has produced a new version of a sphere eversion animation, a video called

Outside In (see the cover of Scientific American, October 1993). This animation is highly

effective in illustrating the eversion process, making it appear almost “obvious”. However,

in all fairness to the pioneering effort by Max, this “re-make” is more successful than the

original largely due to vast improvements in computer power, better software, and a much

larger production team with more years of experience making computer animations. Also,

perhaps more importantly, it illustrates a completely different (and much simpler) proof of

the sphere eversion (due to Thurston).

Another Geometry Center production is Charlie Gunn and Delle Maxwell’s beautiful

animated film Not Knot [GM91] visualizing the hyperbolic structure associated with the

Borromean rings.1 Gunn has also published related work [Gun93] on the visualization of

discrete groups and three-manifolds (see also [PG92]). Visualizing the hyperbolic structure

associated with a knot is a much more difficult visualization problem than sphere eversion as

the action takes place in an unfamiliar realm (hyperbolic three-space) as opposed to ordinary

three-dimensional space, although perhaps the structures are fairly simple ones. Not Knot

used much of the same software (GeomView and various other software packages, some of

them custom written for each project) as did Outside In.

2.4 3D interaction

Intrinsic to any mathematical visualization system is the ability to navigate and manipulate

effectively in whatever space or structure is under study. This section briefly describes some

1This is a famous link of three unknotted circles any two of which alone are unlinked.
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of the work in 3D interaction that pertains to the thesis. One problem in computer graphics

is how to specify an operation that is intrinsically three-dimensional using an apparently two-

dimensional input device such as a mouse. It may seem paradoxical that there is no limit

to the number of dimensions that a mouse can be used to specify. This is because, although

the location of the mouse cursor is constrained to a two-dimensional surface (the computer

screen), the space of paths through this two-dimensional surface has infinite dimension2

(imagine an infinite procession of sliders, one for each dimension). Therefore, in principle

there is nothing that a mouse could not be used to specify, however, it may require users to

perform more and more intricate maneuvers with the mouse.

A simple task that is easily performed through mouse movements is the specification

of an orientation in 3D. This is usually done by imagining a virtual input device that emulates

a real physical device used to directly specify 3D orientations, for example a trackball. These

“virtual spheres” attempt to emulate a real physical trackball consisting of a sphere held in

such a way that it can rotate freely without translating [CMS88, Sho92, Han92]. Trackballs

are often found on video-games but are not a common device on most computer systems.

A trackball can be emulated in a natural way because of the lack of commutativity inherent

in 3D rotations. This means that a sequence of rotations AB is in general not undone by

the sequence A−1B−1. According to Schutz [Sch90] this lack of commutativity is necessary

if infinitesimal operations in a two-dimensional space are to produce a net result that leaves

that space.

There has been some discussion in the literature about which formulation of a 3D

trackball is the most intuitive or useful, or the most efficient at performing specific tasks [Sho92].

It seems that this is largely a matter of personal taste and the degree of training and famil-

iarity with each system. All of the trackballs described in this section appear to be within

“error limits” of each other for most tasks. They are all clearly better than using three sep-

arate linear sliders to specify Euler angles. All of them have some degree of physical realism

to them, and all are easily mastered in a matter of moments. In the final analysis it probably

doesn’t matter mathematically, as there is only one algebra of 3D rotations.

Chen’s work [CMS88] is apparently the first implementation of a virtual trackball in

the literature. It is no doubt wide-spread by now. Implementing it from the description in
2Ignoring, of course, the fact that there are only a finite number of cursor positions.
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the paper can be tricky because of a number of ambiguities and errors in the explanation.

Also the authors give no justification nor citation for a rather mysterious and complicated

looking matrix they use. This matrix is none other than the Rodrigues equation [Alt86, page

75], which gives a rotation matrix in terms of an angle and a rotation axis. The principle

upon which the trackball works is simple. From movements of the mouse it is possible to

derive a rotation axis and an angle. These are used to update the state of the rotation matrix

that is part of the modelling transformation of the object being displayed. Because the axis

is continually changing as the mouse is moved, it is possible to access the entire orientation

space.

Shoemake’s Arcball [Sho92] seems to be one of the most popular virtual trackballs

and is probably the best overall method for any task involving precise control. Many existing

3D modelling tools would stand to benefit by incorporating the arcball. The arcball is also

considerably easier to implement than the trackball. Unfortunately, Shoemake appears to be

unclear on the difference between hysteresis and commutativity, so his claims are somewhat

misleading. Nevertheless his formulation is firmly based on quaternion algebra.

Hanson’s “Rolling Ball” [Han92] is possibly the most theoretically satisfying formula-

tion of these variations on a theme. Hanson examines the rolling ball concept from the point

of view of Lie group theory. His method extends naturally into four and higher dimensions.

There are other versions of the virtual trackball floating around in the literature; the

above are the some of the most well known.

2.5 Visualization in four dimensions

This section surveys some of the relevant literature concerning the visualization of 4D objects

and approaches to interacting with them. Much of the work on the display of 4D objects

(more precisely, 2D surfaces in R4) concerns itself with the correct rendering of such surfaces.

Because of the lack of a unique normal to such a surface in R4, the usual methods for surface

shading used in computer graphics no longer apply. Also, because the surface must eventually

be projected to a 2D screen (and retina), there is a problem with occlusion (which is already

serious in 3D). Finally, there is the issue of the severe distortion that occurs when two out

of the four dimensions are lost during the projection from 4D to 2D.
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In order to produce an image of an object in R4 on a 2D computer display, one of two

methods (or a combination of both) are commonly used. The first of these involves choosing

a suitable 4D “eye-point” in a similar manner to 3D graphics. This point is used to produce a

perspective projection to 3D using equations that are exactly analogous to the standard 3D to

2D perspective equations. The perspective projection from 4D then produces a 3D object (2D

surface in 3D) which may then be displayed using the usual computer graphical techniques.

Alternatively, an orthographic projection might be used (this is of course a limit case of a

perspective projection). In their investigation of the topology of constant energy surfaces of

dynamical systems in 4D, Koçak et al. [KBBL86] make a strong point about the difficulty of

graphics in 4D. They show an example of the difference a choice of projection from 4D to 3D

can make (orthographic or perspective). They find that in general a perspective projection is

more informative, and that important features of the surfaces they study can sometimes be

completely obscured by an orthographic projection. Another important point in the paper

is that animation is a key factor in the visualization of 4D objects. Animating an object

undergoing rigid rotations in 4D allows one to see many different projections of the same

object.

Often combined with the projection technique is the method of ribboning, pioneered

by Banchoff [Ban86]. This is the technique of “painting” transparent stripes on a surface. He

used ribboning to produce an effective illustration of the Hopf fibration of the three-sphere.

Ribboning is an effective way of getting around the problem of occlusion (just as it is in 3D).

Also, if the stripes are painted a colour according to the value of the dimension lost in the

projection, then surfaces are much easier to visualize.

The second method of displaying 4D objects uses a “slicing” technique, where a 3D

manifold (usually a 3D hyperplane) of some sort is used to intersect the 4D space where the

object of interest lies. Resulting from this intersection is some subset of the manifold used for

the slicing, which is again amenable to display with standard methods in computer graphics.

Time can also be used a fourth dimension directly; some objects are effectively visualized as

a sequence of 3D slices.

Recent work by Roseman [Ros95, Ros96] focuses on the visualization of knotted 2-

spheres in 4D (see Chapter 3). Roseman uses ribboning, projection, and slicing techniques

along with animation to illustrate complex deformations of these knots in 4D. He makes a
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strong point that careful choice of the slicing and projection directions is important when

using both techniques together. In particular, it is essential to ensure these directions are

not parallel.

Most researchers cited in this section consider interaction as well as display issues.

However, the interaction is generally of a global nature. That is, rotations, scale changes,

and translations are applied to the scene as a whole. Of these three interactions, the most

(perhaps only) difficult one is higher dimensional rotation. Scale changes and translations

are not significantly different in 4D than they are in 3D. However, rotations are quite another

matter. The space of 4D rotations SO(4) is six-dimensional as opposed to four-dimensional.

Hoffmann and Zhou [HZ90] present a useful discussion of 4D rotations using Euler angles

that helps to clear up some of the difficulty. The authors also point out that animation is of

crucial importance for visualization in 4D because of the significant amount of information

loss that results from the two-step projection from 4D down to the 2D computer screen.

Moreover, 4D rotations can be extremely counter-intuitive. A rigid smoothly rotating object

in 4D can appear after the projection to 3D to be an object in 3D undergoing distortion.

Much of the work in 4D visualization in the computer graphics literature concerns

itself with rendering issues. Ke and Pandurange [KP90] present work on raytracing a 4D ana-

logue of the Mandelbrot set, using animation and slicing techniques. Andrew Hanson and

his co-workers [HH91, HH92, HC93] take a original approach to the illumination of surfaces

in higher dimensions. Surfaces in 4D have no unique normal, so he first “fattens” out the

surface by attaching a 3-ball to each point. This is similar to the way a 1D object is rendered

in a 3D environment. By attaching small disks to each point it is possible to produce an

object that has a unique surface normal. Hanson illuminates the surface (now a 3-manifold)

in 4D and then projects it to what he calls “3D film”. This results in 3D volume data which

he then volume-renders using standard techniques in volume rendering. This method pro-

duces interesting pictures, but obviously has all the problems of volume visualization. Most

computer graphics platforms are still not at the stage where anything approaching interactive

speeds can be expected.

There have been a few attempts at creating general visualization systems for objects

in 4D. Beshers and Feiner [BF88] describe the implementation of a 4D animation system.

They use the technique of employing the hardware matrix multiplier on their graphics com-
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puter to do the 4D rotation and scaling operations. Most of the paper, however, is concerned

with rendering issues. Much more complete is Banks’ [Ban92, Ban93] doctoral dissertation

on the subject of interaction and display of surfaces in 4D. His thesis contains a wealth of in-

formation touching upon several important areas. He examines the use of multiple joysticks,

spaceballs, and other exotic input devices for mapping the user space into the 4D world coor-

dinates for the purpose of performing rotations and translations. Banks provides a thorough

study of which mappings promote the best kinesthetic sympathy with the user. Like Ban-

choff [Ban86], Banks also uses ribboning as an effective visualization tool. With ribboning

the surface is either entirely transparent or entirely opaque, so it works well with current

graphics hardware, which cannot support real time rendering of partially transparent sur-

faces. Particularly interesting is Banks discussion of silhouettes and intersection curves. He

describes innovative techniques for using the z-buffer to automatically compute intersection

curves after a surface is projected to 3D.
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Chapter 3

Knot Theory

This chapter is an overview of the knot theory relevant to issues of interest in this the-

sis. To learn more about knot theory, one might consult several excellent treatments of

the subject [Fox62, Rol76, BZ85, Kau87, Kau91, Mur96, Kaw96] that discuss the topic

in great detail, as well as popularized accounts intended for a non-mathematical audi-

ence [Neu79, Pet88, Jon90]. Recent books by Livingston [Liv93] and Adams [Ada94] are

thorough reviews at an intermediate level. An excellent history of knot tabulations can

be found in a paper by Thistlethwaite [Thi85]. That paper, together with papers by Mil-

lett [Mil92] and Lomonaco [Lom96], provides a good historical account of knot theory.

3.1 Introduction to knot theory

Knot theory is a branch of topology where one studies what is known as the placement prob-

lem, or the embedding of one topological space into another [Fox62, Lom96]. The simplest

(non-trivial) form of knot theory is concerned with the embedding of one or more disjoint cir-

cles into three-dimensional space. For the purposes of this thesis a knot is defined to be such

an embedding of a circle (i.e. a simple closed curve) in three-dimensional Euclidean space R3.

Note that a mathematical knot is somewhat different from the usual idea of a knot, which

can be thought of as a piece of string with free ends. The knots studied in knot theory are

(almost) always considered to be closed loops. Two or more disjoint knots together are called

a link. Each constituent knot of the link is known as a component of the link. To simplify the

terminology in the thesis, we will often refer to links as knots and, following Conway [Con70],
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left-handed trefoil right-handed trefoil Hopf link

Figure 3.1: The simplest knot (in two forms) and the simplest link.

use the term proper knot when specifically referring to one-component knots.

Two knots or links are equivalent if there exists an orientation-preserving homeo-

morphism on R3 that maps one knot onto the other.1 A homeomorphism is a continuous

one-to-one mapping with a continuous inverse. This condition is equivalent to saying that

one knot may be smoothly deformed into the other.2 Cutting the knot or allowing it to

pass through itself are not permitted. In general it is a difficult problem to decide if two

given knots are equivalent, and much of knot theory is devoted to developing techniques to

aid in answering this question. Knots that are homeomorphic to polygonal paths in three-

dimensional space are called tame. Other knots are known as wild. Most of knot theory

concerns only tame knots, and these are the only knots examined here. Knots that are

homeomorphic to a planar polygon are considered to be unknotted, or trivial.

The simplest non-trivial knot is the trefoil or clover-leaf knot. It comes in a left-

handed and a right-handed form (Figure 3.1). It is not too difficult to see (but slightly

more difficult to prove) that the trefoil is not equivalent to the unknot. The two versions

of the trefoil are not equivalent under our definition of equivalence.3 In physical terms, the

inequivalence of the unknot and the two trefoils means that there would be no way to deform

a piece of rope tied in one configuration into either of the other configurations. Also shown in

Figure 3.1 is the simplest non-trivial link, the Hopf link, which is just two interlocked rings,

each independently unknotted.

One point worth noting is that although this thesis is concerned only with piecewise

linear knots, all the knots presented so far appear to be smooth (i.e. differentiable) curves.
1Note that this homeomorphism is a mapping from the ambient space into itself that “carries” the knot

along with it. Any two knots are obviously homeomorphic if the mapping is between the knots themselves.
2Technically, this second form of equivalence is known as ambient isotopy.
3The two trefoils are equivalent if the homeomorphism is combined with a reflection.
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The study of knots, and topology in general, can be undertaken in several different categories.

In the piecewise linear category, or PL, all objects considered are piecewise linear, as are the

mappings between objects. In the smooth category, or DIFF, everything is required to be

differentiable instead. The general category, or TOP, drops both of these restrictions. TOP

is the realm of wild knots, which we do not consider in this thesis. It has been shown that

PL knot theory and DIFF knot theory are equivalent in three dimensions [Fox62], so our

drawing PL knots as smooth curves is not unreasonable. Also, since it is the convention in

the literature of PL topology for illustrations to convey the impression of smoothness, we

will frequently shift between the two viewpoints, and will normally draw knots as looking

smooth. However, the reader should bear in mind that at all times the knots considered here

are actually PL knots. Curiously, in higher dimensions the PL and DIFF categories diverge

[Hae62], however, this too is beyond the range of study in this thesis.

An alternative way to look at knot equivalence is by examining a projection of the knot

onto a plane. Such a projection, called a knot diagram or presentation, can always be made

so that the cross-over points have one of the two forms shown in Figure 3.2. It was shown by

Figure 3.2: Crossings permitted in planar projections.

Reidemeister as early as 1935 [Rei35, BZ85] that two knots are equivalent if and only if the

projection of one can be converted into the projection of the other through the use of just

three types of moves, along with isotopies4 of the knot diagram in the (extended) plane. The

three Reidemeister moves are pictured in Figure 3.3. Each illustration in Figure 3.3 represents

a class of moves; the reader is asked to infer the remaining cases (i.e. using reflections and

rotations).

Using the Reidemeister moves it is clear that any knot has an infinite number of

distinct projections in the plane, of arbitrary complexity. For this reason, knot diagrams are

often drawn in a form that has the fewest crossings of all possible projections. Such a knot

diagram is called a minimal projection of the knot and the number of crossings in the diagram
4Continuous deformations.
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⇔

Type I

⇔

Type II

⇔

Type III

Figure 3.3: The three types of Reidemeister moves.

of the form shown in Figure 3.2 is called the crossing number of the knot. It is generally true

that this minimal projection is not unique. It should be intuitively clear that the trefoils

shown in Figure 3.1 as well as the unknot do have unique minimal projections, with crossing

numbers of three and zero, respectively. The trefoil is the only knot with a crossing number

of three. Figure 3.4 (seen before in Figure 1.2) shows examples of the unknot and the trefoil

in non-minimal projections with ten crossings each and a non-minimal projection of the Hopf

link with eight crossings. These diagrams provide some indication that the minimal crossing

number of a knot is generally not easy to determine.

The crossing number provides a intuitive measure of complexity of a knot, and it

has been the custom until recently to rank knots in catalogues according to their crossing

numbers ([CDW98] take a complementary approach, see Chapter 8 for a discussion). For

these purposes, it is necessary to list only prime knots. These are knots that cannot be

subdivided into two or more simpler non-trivial knots. Knots (and links) that are not prime

are called composite. Composite knots correspond to the operation of tying two separate

knots sequentially in a piece of rope, as shown in Figure 3.5.

A catalogue of all prime knots with ten crossings or fewer (in a minimal projection)

unknot (crossing number 0) Hopf link (crossing number 2) trefoil (crossing number 3)

Figure 3.4: Examples of non-minimal projections
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Square knot 31]31 Granny knot 31]31

Figure 3.5: Examples of composite knots.

Number of Crossing number
components 2 3 4 5 6 7 8 9 10

1 0 1 1 2 3 7 21 49 165
2 1 0 1 1 3 8 16 61 184
3 0 0 0 0 3 1 10 21 73
4 0 0 0 0 0 0 3 1 21
5 0 0 0 0 0 0 0 0 3

Table 3.1: Number of prime knots and links to ten crossings.

and all prime links with nine crossings or fewer, complete with diagrams, is given in Rolf-

sen’s book Knots and Links [Rol76]. This catalogue, arguably the most well-known of all

knot catalogues, depends on two important earlier enumerations, that of Alexander and

Briggs [AB27] and another by Conway [Con70]. Alexander and Briggs produced the first

complete catalogue of knots up to nine crossings in which each knot was known to be dis-

tinct from others in the catalogue. Conway extended this to ten crossings in 1970, including

links with up to five components as well.5

Knots and links in this range have a standard naming convention (sometimes called

the Alexander-Briggs-Conway-Rolfsen notation). The knots are named according to their

minimal crossing number, with a subscript indicating the (mostly) arbitrary ordering among

knots with the same crossing number. Because mirror images are generally ignored for

purposes of enumeration in knot catalogues, there is only one knot with three crossings,

namely the trefoil denoted by 31. The only knot of four crossings, the figure-eight knot, is

41 (Figure 3.6). There are two knots of five crossings, 51 and 52, three with six crossings, 61,

62, 63, and so on. For multi-component links, a superscript indicates the number of distinct
5Conway also enumerated 11 crossing knots.
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⇒ ⇒

⇓

⇐ ⇐

Figure 3.6: The simplest achiral knot, the figure-eight knot. Rotation about the indicated
axis by 180◦ transforms the knot into its mirror image.

components in the link. An example is the Hopf link, 22
1 (see Figure 3.1), which is the only

knot or link with a crossing number of two. Table 3.1 shows the number of knots and links

of ten or fewer crossings up to and including Conway’s results.

Recently knot enumeration has taken a huge leap forward, largely due to using com-

puter techniques and efficient means of encoding knot diagrams. Hoste, Thistlethwaite, and

Weeks have now determined that there are 1,701,935 prime knots6 with 16 or fewer cross-

ings [HTW98]. To check results, the researchers worked in two independent teams using

completely different methods, none-the-less coming up with the same list of knots. In Chap-

ter 6 we will return to the discussion of the work of one of these teams (that of Thistlethwaite)

when we consider the issue of drawing knot diagrams for these “newly discovered” knots.

Although mathematicians are not concerned with mirror images when constructing

knot catalogues, it is useful to have a notation for the mirror image of a given knot. The

left and right hand trefoils shown in Figure 3.1 will be denoted as 31 and 31, respectively.

Most knots are not equivalent to their mirror images; these knots are known as chiral knots.
6The researchers included the unknot as a “knot”, hence the total count of 1,701,936 in the title of the

paper. It would really be better to refer to the unknot as the trivial knot.
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Figure 3.7: The single known example of an achiral knot with an odd crossing number.

Some knots, such as the figure-eight knot (41) are equivalent to their mirror image and are

called achiral. Chirality can be important when forming composite knots. For example, the

two composite knots shown in Figure 3.5 are actually inequivalent, although this fact is not

at all easy to prove.

With the figure-eight knot it is easy to demonstrate achirality; the diagrams in Fig-

ure 3.6 constitute a proof. It should be pointed out that the figure-eight knot illustrated

exhibits rigid geometric achirality in that a rigid rotation of the knot by 180◦ is sufficient to

map it into its mirror image. When we speak of knot achirality, we generally mean it in a

less restrictive sense. A given embedding of an achiral knot will usually not be in a rigidly

achiral position, however, it may be deformed by smooth topological transformations into its

mirror image. The embedding of the figure-eight knot shown in Figure 3.6 exhibits several

interesting symmetries in addition to rigid geometric achirality. Discussion of this specific

case will be taken up in Chapter 8.

Some surprise was generated in the knot theory community by the previously men-

tioned knot enumeration work of Hoste, Thistlethwaite, and Weeks [HTW98] A long-held7

conjecture about achiral knots with an odd crossing number, namely that none existed, was

proven false with the discovery of a single counterexample with 15 crossings. This knot is

shown in Figure 3.7, and doesn’t look obviously achiral. Its achirality may be proven us-

ing the computer program SnapPea written by Weeks [Wee90, HW92] using techniques not
7More than a century.
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discussed in this thesis.

3.2 Conway’s tangle calculus

In 1970 John Conway [Con70] injected new life into the theory of knots by inventing a

powerful notation system that allowed the efficient enumeration of many more knots and

links. Conway’s system is based on the idea of tangles, or sections of a knot diagram consisting

of two separate strings with open ends, as shown in Figure 3.8. Conway considered only

+1 −1 0 ∞
Figure 3.8: Conway’s fundamental tangles.

two-string (four-input) tangles, however, tangles with any number of strings may also be

considered [APR89, Rol94].

The fundamental tangles may be combined using the algebraic operations as shown

in Figure 3.9. Conway’s “ ” symbol indicates the orientation of the inserted tangle. These

Direct sum Product +twist −twist

Figure 3.9: Algebraic operations on tangles.

operations produce more complex tangles from simpler tangles. For example, two +1 tangles

may be summed to form a +2 tangle. Iterating this process using only the +1 or −1 tangles

generate the integral tangles, a few of which are shown in Figure 3.10. Integral tangles may

+2 −3 +4

Figure 3.10: Integral tangles.
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be combined together using the product operator as shown in Figure 3.11. Note that the

3 2 32

Figure 3.11: Construction of a tangle product.

product operator is similar to the sum operator except that the first multiplicand is reflected

and rotated. Conway’s product is left-associative, i.e. abcd = (((ab)c)d). Figure 3.12 shows

that a different tangle results if the product is taken right-associatively instead. Tangles

432 ≡ (43)2 4(32)

Figure 3.12: Left associativity of tangle product.

formed in this way (left associative products of integral tangles) are known as the rational

tangles.

Eventually, to produce a knot diagram, the free ends of the tangles must be spliced

together somehow. Conway provided a number of what he termed basic polyhedra as tem-

plates into which one might insert various tangles. Several of these are shown in Figure 3.13,

redrawn but topologically equivalent to Conway’s originals. The simplest of these is the

1?-polyhedron, which joins the top two ends (NE and NW) and the bottom ends (SE and

SW) to form what is also called the numerator [Kau87] of the tangle. For example, inserting

a 3-tangle into the 1?-polyhedron produces the knot on the left in Figure 3.14, easily recog-

nized as the trefoil. Conway’s convention is that the notation for the knot is the same as the

inserted tangle in the case that the 1?-polyhedron is used, so the trefoil may be compactly
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Figure 3.13: Several basic polyhedra.

3 (trefoil) 22 (figure-eight) 212 (52
1) 8? (818)

Figure 3.14: Knots with their Conway notations. The first three are constructed from the
1? polyhedron.

denoted by the single numeral 3.

Constructing knots using basic polyhedra more complicated than 1? requires that

some of the inserted tangles be reflected or rotated in a manner similar to the product

operation shown in Figure 3.9. Just as in that case, the “ ” symbols guide the insertion of

the tangles. Inserting a +1-tangle into each “slot” of the 8?-polyhedron produces the knot

shown on the right in Figure 3.14. Although for this case Conway’s notation for the knot

is simply 8?, for most knots the notation is somewhat more involved. The reader should

consult Conway’s paper [Con70] for more detail.

This review of Conway’s calculus has necessarily omitted many details and applica-

tions. In particular, the methods used by Conway in eliminating duplicates in his tables is

extremely interesting. The notation system is cleverly designed to make complex operations

on knot diagrams correspond to simple manipulation of the tangle strings. Also of consid-

erable theoretical importance is a curious relationship discovered by Conway between the

rational knots and the rational numbers (written as finite continued fractions). The rational
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knots are the knots obtained by inserting a rational tangle into the 1?-polyhedron. Perhaps

the greatest single contribution of Conway’s paper is the concept of the tangle itself. The

reader is urged to consult the original paper [Con70] or more recent work that focuses on the

tangle calculus [ES90] or uses tangles in innovative ways [Rol94] to learn more about these

interesting applications. A precise grammar for the Conway notation may be found in the

KnotPlot manual [Sch97b].

3.3 Topological invariants

Much of knot theory is concerned with providing methods for determining whether two knots

given in different presentations are actually the same. So far, the method we have seen is

to provide a direct proof by specifying a sequence of knot diagrams related by Reidemeister

moves. Actually this is the only known technique for showing knot equivalence in the general

case. Furthermore, no algorithm is known that will always succeed at producing a proof of

knot equivalence. Even the easier problem of detecting knottedness, although decidable in

principle [Hak61, Hem92], is only known to have an algorithm of such high complexity that it

is useless for all practical purposes. Recent results of Haas, Lagarias and Pippenger [HLP97]

show that the problem of detecting unknottedness is in the complexity class NP. This is

“good news” in that, although still difficult, the problem is easier than had hitherto been

believed.

The difficulty in showing knot equivalence algorithmically is that often a knot diagram

must be made more complex before it can be simplified (where complexity is defined as the

number of crossings in the diagram). The “monster” from Figure 1.1 as well as the “Freedman

(un)knot” (taken from [FHW94]) in Figure 3.15 cannot be simplified by either one of the

first two Reidemeister moves (Figure 3.3), both of which reduce the number of crossings. In

fact, as will be shown in Chapter 7, the first of these unknots must go from a ten crossing

projection to (at least) a twelve crossing projection before it can be simplified. Along these

lines, Ochiai [Och90] has shown that there are arbitrarily complicated diagrams of the unknot

that lack what he calls n-waves . These are specific types of underpasses (or overpasses) in

the knot diagram which, if they existed in all diagrams of the unknot, would imply that

an easy (i.e. polynomial time) algorithm could be developed for determining unknottesness
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Figure 3.15: The Freedman unknot, another “difficult” unknot with
no simplifying Reidemeister move.

(since the n-waves themselves are easily detected). In a similar vein, Snoeyink [Sno90] has

constructed a class of complicated unknots that foil attempts at a polynomial time algorithm

for detecting unknottedness using one specific approach (based on Seifert spanning surfaces).

Although the general problem of knot equivalence appears to be too difficult, topolo-

gists have developed powerful techniques that work for many cases. A topological invariant

of a knot (or knot diagram) is a mapping from the space of knot embeddings into another

space (examples are the integers, real numbers, Laurent polynomials, etc.) in such a way that

the value of the invariant doesn’t depend on the way the knot is embedded in space. With

regard to a knot diagram, this is equivalent to requiring invariance under the Reidemeister

moves. Using such an invariant, it is possible to show that two knots are actually distinct if

they have differing values of the invariant.

A trivial example of a knot invariant is the number of components in a link. Two links

with different numbers of components are obviously inequivalent; this is easy to prove by

noting that the Reidemeister moves do not change the number of components. The number of

components is probably the weakest knot invariant of any interest. The invariants considered

in this thesis are considerably more powerful, however, a knot invariant that distinguishes

all knots and links and is “not too hard” to compute still eludes knot theorists.

3.3.1 Linking number

For links with two or more components, a simple knot invariant somewhat more useful

than the number of components is the linking number. This may be defined in a number

31



−1, left-handed +1, right-handed

Figure 3.16: Oriented crossing types.

L(22
1) = 1 L(52

1) = 0

Figure 3.17: Two links distinguished
by linking number.

L(62
1) = 3 L(62

2) = 3

Figure 3.18: Two inequivalent links
with the same linking number.

of ways ([Rol76, page 132] gives eight equivalent definitions); the simplest in terms of a

knot diagram is to consider all places in the projection where one component crosses over

a different component (self-crossings are ignored). Each crossing is counted as a −1 or a

+1 depending on whether the crossing is a left-handed or right-handed crossing as shown

in Figure 3.16. Note that for each component an orientation must be chosen. The linking

number L(A,B) between two components A and B in a link is defined to be one half of the

sum over all crossings of the two components.8 Reversing the orientation on one component

changes the sign of the linking number. It is not hard to show that the linking number is a

knot invariant. Again, invariance under the Reidemeister moves is all that is required. Using

the linking number allows one to prove that the two links shown in Figure 3.17 are different.

However, Figure 3.18 shows that the linking number is not a complete invariant. In fact,

because each component may be arbitrarily knotted, it’s not difficult to see that there must

be an infinite collection of inequivalent links that have a given linking number.

It is useful to define several concepts related to linking number that will be discussed

later in the thesis. Two components in a link with a linking number of zero are said to be

homologically unlinked. Equivalently, the two components may be unlinked by applying a
8The notation L(K) where K is a two-component link will be used to mean the linking number of the two

components.
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819, w = 8 819, w = 8

Figure 3.19: Two different minimal dia-
grams of the same knot with the same
writhe.

10161, w = 8 10162, w = 10

Figure 3.20: The Perko pair, two minimal
crossing diagrams of the same knot with
different writhes.

smooth deformation that allows each component to pass through itself. If two components

in a link, A and B, may be unlinked by having only component A pass through itself then

component A is homotopically unlinked from component B. Note that this relation is not

symmetric [Rol76].

Another useful definition is the writhe of an oriented knot diagram. The writhe, w,

is defined in a similar manner to the linking number, except that a sum over all crossings is

considered, not just crossings between two different components. Here, as with the linking

number, we count a ±1 for each crossing according to its type shown in Figure 3.16. Note

that the writhe is not a knot invariant. It is not hard to show that Reidemeister moves of

types II and III do not change the writhe, but a Reidemeister move of type I changes the

writhe by ±1, depending on the direction twisted. Properties such as the writhe that are not

changed by Reidemeister moves of type II and III are sometimes called invariants of regular

isotopy [Kau91].

We close this section with a cautionary tale that illustrates the subtlety of problems

in knot theory. It concerns a conjecture of Tait’s [Tai76] on the writhe that led to the most

famous case of “hidden identity” ever seen in knot theory. Tait conjectured that if a knot had

two different minimal crossing diagrams, then the writhe of the diagrams would be the same.

This is normally the case as can be seen from the diagrams in Figure 3.19, both minimal

diagrams of the knot 819. This reasonable, but false, conjecture lead researchers to believe

that the two knot diagrams shown in Figure 3.20 represented distinct knots, as they have

writhes of 8 and 10 and are known to be minimal crossing diagrams. This belief persisted

throughout the enumeration by Conway [Con70] (thus accounting for the different catalogue

numbers of the two projections shown in Figure 3.20) until Perko showed [Per74] in 1974
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knot sticks
31 6?

41 7?

51 8?

52 8?

61 8?

62 8?

knot sticks
63 8?

71 9
72 9
73 9
74 9
75 9

knot sticks
76 9
77 9
81 10
819 8?

820 8?

821 9

Table 3.2: Meissen’s stick number results. A ? indicates that the value
is known to be best value possible (i.e. it is the stick number of the
knot).

that the two in fact represent the same knot. He did this by providing a simple sequence of

diagrams illustrating the deformation of one diagram into the other.

3.3.2 Stick number

Another simple knot invariant is the stick number (or edge number) [Ran94, ABGW97]. This

is the fewest number of straight “sticks” it takes to construct the knot. More formally, the

stick number s(K) of a knot K is the smallest n for which there exists an n-sided polygonal

representative of that knot-type. Remarkably little is known about this apparently simple

problem. What is known is easily summarized:

• The trefoil (31) is the only proper knot that can constructed with six sticks, and the

figure-eight knot (41) the only proper knot with a stick number equal to seven. The

stick number for some other knots is known: Table 3.2 contains most of the known

values.

• The connected sum of N trefoils has a stick number of 2N + 4.

• For a knot K with crossing number c(K), the stick number s(K) is constrained

by [Neg91]
5 +

√
8c(K) + 9

2
≤ s(K) ≤ 2c(K)

The lower bound is fairly weak, since this implies that knots with ten crossings may

have stick numbers as low as eight. Experimental results ([Mei96] and Chapter 8)

indicate that this is unlikely.
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L+ L− L0

Figure 3.21: Tangles appearing in skein relations.

• Rational knots have a somewhat tighter upper bound. McCabe [Ran96] has shown

that for these knots s ≤ c + 4.

• The (m,m− 1)-torus knot (Section 5.1.2) has a stick number of 2m [ABGW97].

So far, most effort has gone into constructing examples that represent lower limits on the

stick number. Meissen [Mei96] at the University of Iowa has pioneered much of this work.

Partial results of her work are shown in Table 3.2 for purposes of comparison to research

presented in Chapter 8. Meissen arrived at her results by doing manual manipulation with a

knot editing and visualization program named KED (written by Hunt [Hun96]). This work

undoubtedly requires a great deal of patience, but may be the best method currently known

for finding stick numbers.

3.3.3 Knot polynomials

Our examination of knot polynomials follows the excellent survey found in Wu’s review

paper [Wu92]. He presents a unified treatment of several knot polynomials in terms of a

skein relation. The idea of a skein relation was invented by Conway [Con70]. It is a relation

between functionals defined on a set of knot diagrams that differ only locally. Essentially, the

idea is to “cookie cut” a tangle out of one knot diagram, and then to replace it with another

tangle. The tangles considered are shown in Figure 3.21 and have been seen before in the

discussion of the Conway notation except that here the strings in the tangle are oriented.

One minor difference from the tangles we’ve seen before is that L0 looks like Conway’s ∞-

tangle. Figure 3.22 shows examples of knot diagrams related via a skein relation, differing

only locally within the dashed regions.

A knot polynomial is a mapping from a knot diagram into the Laurent polynomials9

9Polynomials with positive or negative exponents.
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Figure 3.22: Examples of knot diagrams related via a skein relation.

that is invariant under the Reidemeister moves. Alexander originally derived the polynomial

that bears his name by a method completely independent of skein relations [Ale28]. The

techniques he used are outside the scope of this thesis, however, consult [Rol76, BZ85] to read

about the important mathematical rôle played by the Alexander polynomial (among several

significant topological properties, the Alexander polynomial extends to higher dimensional

knots in a way that the newer polynomials do not). Conway reformulated the Alexander

polynomial using a skein relation of the form

∇L+(z)−∇L−(z) = z∇L0(z)

∇unknot(z) = 1

where L+, L−, and L0 represent three knot or link diagrams that differ only locally in the

manner shown in Figure 3.22. The formula above specifies how the Conway polynomials

∇(z) of each of these knots are related. Calculating the polynomial for a given knot involves

applying the skein relation repeatedly until one is left with a collection of unknots (or other

knots whose polynomials have been previously determined). At each step, any sequence of

Reidemeister moves is allowed. Such a procedure results in a binary tree, known as a skein

tree, an example of which is shown in Figure 3.23 for the knot 63. The leaves of this tree are

all unknots with a known polynomial ∇(z) = 1. Working back toward the root of the tree

while applying the skein formula allows one to compute the polynomial of the original knot.

It is not hard to show [LM88] that the calculation of the polynomial is guaranteed to

terminate; in other words, the polynomial is well-defined. What is somewhat more difficult

to prove is that the resulting polynomial is unique; i.e. it doesn’t depend on the exact form

of the skein tree chosen. From looking at Figure 3.23 it is probably obvious that many

skein trees are possible for the same knot, since at each step there are usually many choices
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∇(z) = 1 + z2 + z4

V (t) = 3 − t−3 + 2 t−2−
2 t−1 − 2 t + 2 t2 − t3

−→− 7→ +

∇(z) = 1
V (t) = 1

−→
III, II

∇(z) = 1
V (t) = 1

−→
II, I

∇(z) = 1
V (t) = 1

↓− 7→ 0

∇(z) = z + z2

V (t) = (1 + t2)×
(1 + t2 − t3) t−3/2

−→
+ 7→ 0

∇(z) = −z2

V (t) = (1 + t2)
2
t−2

−→
+ 7→ −

∇(z) = 0
V (t) = (1 + t) (1 + t2) t−3

−→
II

∇(z) = 0
V (t) = (1 + t) (1 + t2) t−3

↓+ 7→ − ↓+ 7→ 0 ↙0 7→ + ↓0 7→ −

∇(z) = z

V (t) = (1 + t2) t−5/2

∇(z) = z

V (t) = (1 + t2) t−5/2

←−
isotopy

∇(z) = z

V (t) = (1 + t2) t−5/2

←−
I, I

∇(z) = z

V (t) = (1 + t2) t−5/2

↓II ↓I

∇(z) = z

V (t) = (1 + t2) t−5/2

−→
I

∇(z) = z

V (t) = (1 + t2) t−5/2

∇(z) = 0

V (t) = (1 + t) t−1/2

−→
0 7→ −

∇(z) = 1
V (t) = 1

↙− 7→ 0 ↓− 7→ + ↗II ↓0 7→ + ↓I

∇(z) = 1
V (t) = 1

∇(z) = 0

V (t) = (1 + t) t−1/2

∇(z) = 1
V (t) = 1

−→
I

∇(z) = 1
V (t) = 1

Figure 3.23: Computing the Conway and Jones polynomials for the knot 63.
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of which crossing the skein relation will be applied to next.10 It is also not obvious that

the polynomial is actually a knot invariant. In fact, the polynomial is both unique and a

well-defined knot invariant; the proof is straight-forward but tedious [Kau91].

As we have said, Conway’s polynomial is a reformulation of the original polynomial

due to Alexander, ∆(t). The two polynomials are actually equivalent and related by

∇(z) = ∆(t), z =
1√
t
−√t

This difference of normalization is common in the field of knot polynomials, the same polyno-

mial often appearing in several guises. Although the Conway polynomial is computationally

equivalent to the Alexander polynomial, Conway’s approach is important because it revealed

that the polynomial could be calculated via a combinatorial technique on knot diagrams (the

skein relations) rather than the much more abstruse topological notions used by Alexander.

However, it is ironic that from Alexander’s approach it is possible to derive an efficient

algorithm for computing the Alexander-Conway polynomial, one that has a running time

bounded by a polynomial in the number of crossings of the original knot diagram. This is

in contrast to the exponential blowup we might expect occurs when computing the same

quantity using a skein tree.

It turns out that the Alexander-Conway polynomial is a reasonably powerful knot

invariant. Of the 249 prime proper knots with 10 or fewer crossings, 175 are distinguished

by their Alexander-Conway polynomial, 68 share the polynomial with one other knot, and

the remaining six knots fall into two groups of three knots with the same polynomial. The

polynomial is immune to mirror images; both versions of the trefoil (Figure 3.1) have a

Conway polynomial equal to 1 + z2. Also some simple composite knots, such as the Granny

and Square knots (Figure 3.5) have the same Conway polynomial 1 + 2 z2 + z4. The reason

why the Granny and the Square knots are not distinguished is related to the fact that the

two trefoils have the same polynomial as well as to an interesting property about how the

polynomial behaves under the direct sum of two knots. If K and L are two knots (not

necessarily prime) with Conway polynomials ∇(K) and ∇(L) then the Conway polynomial
10The tree shown in the Figure 3.23 is unlikely to be the smallest skein tree possible for the given knot.

The reader may enjoy finding a more efficient tree.
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Figure 3.24: The first of an infinite series of non-trivial knots with
trivial Alexander-Conway polynomial.

of the composite knot K]L is given by

∇K]L(z) = ∇K(z)∇L(z)

so we see that the failure to distinguish the Square and the Granny is the result of the failure

to distinguish mirror images.

Somewhat more disheartening than the inability to distinguish mirror images is the

fact that for any given knot there exists an infinite number of inequivalent knots with the same

Alexander-Conway polynomial [Whi37]. In particular, there are infinitely many different

knots that are indistinguishable from the unknot as far as the polynomial is concerned. The

first of these, an 11-crossing knot, is shown in Figure 3.24.

For most of the history of knot theory, the Alexander polynomial was the only knot

polynomial. It was quite a shock to many when Vaughan Jones [Jon85] discovered a powerful

new polynomial invariant for links in 1985 defined by the skein relation

1
t
VL+(t)− tVL−(t) =

[√
t− 1√

t

]
VL0(t)

Vunknot(t) = 1

The Jones polynomial is far more discriminating than the Alexander-Conway polynomial.

For example, it is able to distinguish the two versions of the trefoil; the left and and right-

handed trefoils having Jones polynomials −t−4 + t−3 + t−1 and t + t3 − t4, respectively.

These two polynomials illustrate a general feature of the Jones polynomial. If the Jones
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Figure 3.25: A knot, 942, with chirality not detected by the Jones polynomial

polynomial of a given knot is known, then the Jones polynomial of its mirror image can be

found by making the substitution t 7→ 1/t. In the case of the trefoil and many other knots,

this property provides an easy proof of knot chirality. However, the method is not perfect;

the knot 942 (Figure 3.25) has Jones polynomial −1 + t−3 − t−2 + t−1 + t − t2 + t3 which

is unchanged by the substitution t 7→ 1/t even though the knot 942 is chiral [HW92]. The

Jones polynomial shares the property of the Alexander-Conway polynomial with regard to

composite knots,

VK]L(t) = VK(t)VL(t)

In this case it turns out that the Square knot with polynomial 3− t−3 + t−2− t−1− t+ t2− t3,

is distinguished from both versions of the Granny knot (polynomials t−8−2t−7 +t−6−2t−5 +

2t−4 + t−2 for a sum of two left-handed trefoils and t2 + 2 t4 − 2 t5 + t6 − 2 t7 + t8 for a sum

of two right-handed trefoils).

Jones’ discovery had a profound effect on the knot theory community, causing re-

searchers to start looking for new polynomial invariants. Remarkably, six researchers work-

ing independently in four groups almost simultaneously came up with the same polynomial

(after appropriate re-normalizations) that is a generalization of both the Alexander-Conway

and Jones polynomials [FYH+85]. The new polynomial, called the HOMFLY polynomial
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3,5,7,5,3 3,5,5,7,3 3,5,7,3,5

Figure 3.26: Three inequivalent “pretzel” knots (together with their
Conway notation) with the same HOMFLY polynomial of t−24(−2−
2 t2 +2 t4 +2 t6 + t8−z2− t2 z2 +2 t4 z2 +6 t6 z2 +12 t8 z2 +15 t10 z2 +
12 t12 z2+6 t14 z2+t16 z2+t2 z4+5 t4 z4+13 t6 z4+23 t8 z4+29 t10 z4+
27 t12 z4 + 19 t14 z4 + 10 t16 z4 + 4 t18 z4 + t20 z4).

after its co-discoverers11 is defined by the relation

1
t
PL+(t, z)− tPL−(t, z) = zPL0(t, z)

Punknot(t, z) = 1

As we have said, the HOMFLY polynomial is a generalization of both the Conway and Jones

polynomials, which can be obtained by making the following substitutions

∇(z) = P (1, z), V (t) = P (t,
√

t− 1/
√

t)

It is capable of distinguishing many knots that the other two polynomials do not. However,

even the HOMFLY polynomial is not a complete invariant. Figure 3.26 shows three inequiv-

alent “pretzel” knots with identical HOMFLY (and therefore Alexander-Conway and Jones)

polynomials.

There are other knot polynomials in addition to the three discussed here, in particular

the Kauffman polynomial and the Akutsu-Wadati polynomial. These polynomials are derived
11Ruth Lawrence [Law96] makes the valid point that there was one other research team that indepen-

dently discovered the same polynomial, namely that of Przytycki and Traczyk [PT87]. She suggests that the
HOMFLY polynomial be renamed the FLYPMOTH polynomial in recognition of this fact. In addition, she
mentions that this name makes a satisfying allusion to Tait’s “flyping” operation. It could be added that the
name FLYPMOTH is appropriate in another sense, in that it contains two insect names, corresponding to
the two variables of the polynomial.
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in a somewhat different manner from the ones we have seen, as they use a modified version of

the skein tree. The Kauffman polynomial appears to be roughly equivalent to the HOMFLY

polynomial for knot recognition; it is capable of distinguishing the knots shown in Figure 3.26.

On the other hand there exist knots that the HOMFLY polynomial can distinguish but the

Kauffman polynomial can not. Again, Wu’s paper [Wu92] and Kauffman’s book [Kau91] are

good references.

3.4 Braid theory

Braid theory was invented in 1925 by Emil Artin [Art25, Art47] and has developed semi-

independently of knot theory. For the purposes of this thesis, we will consider a braid to

be a special type of knot diagram in which there are n equally spaced points connected via

n strands to a second set of n points as in the examples shown in Figure 3.27. A further

σ5
1 (σ1σ

−1
2 )2σ−1

2 σ−1
3 σ2

2σ
−1
1 σ−1

3 σ3
1σ4σ1 σ1σ

−1
2 σ3σ

−1
4 σ5

Figure 3.27: Examples of braids on 2, 3, 4, 5, and 6 strings.

requirement is that the strands proceed monotonically downward. If we draw a series of

parallel lines in the plane between the two sets of points, it is not difficult to see that the

braid can always be drawn such that between any pair of lines there is only one crossing of

the form shown in Figure 3.28. It is clear that any braid may be constructed by using these

generators and the operation of composition shown in Figure 3.29. Moreover, the generators
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σ1

,
σ2

,
σn−1

σ−1
1

,
σ−1

2

,
σ−1

n−1

Figure 3.28: Generators of the braid group on n-strings.

A

B

Figure 3.29: Composition of braids A and B.

obey the simple relations

σiσ
−1
i = 1, i = 1, . . . , n− 1

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n− 2

σiσj = σjσi, |i− j| > 1

shown graphically in Figure 3.30 (for a few specific cases). These relations are easily derived

consequences of the Reidemeister moves. Together, the generators and relations form the

braid group Bn on n-strings. These groups have many fascinating properties.

One further connection of braid theory with knot theory comes from a theorem due

to Alexander [Ale23] that any knot or link may be represented as a closed braid. A braid

may be closed by connecting the top ends to the bottom ends, in sequence, in such a way

so as not to introduce any new crossings. An example of constructing a closed braid from a

typical knot is shown in Figure 3.31. Note that in this case it is necessary to rearrange the

knot diagram first so that the strings always circulate in the same direction. The essence of

Alexander’s theorem lies in showing that this is always possible. After the knot diagram is
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σ2σ
−1
2 = 1 σ2σ3σ2 = σ3σ2σ3 σ1σ3 = σ3σ1

Figure 3.30: Relations in the braid group B4.

placed in this special form, it is easy to “read off” the braid word. This theorem has deep

and important consequences in many areas [Bir74].

Our discussion of braids has been brief. Braid theory has many interesting connections

with knot theory that we haven’t discussed, for example in relation to the knot polynomi-

als.12 Also, braids have proved useful for classifying knots. Braids will appear once again

in Chapter 8 with regard to the hyperbolic knot census, where they provide a convenient

means to construct complicated knots. Most of the knot theory books cited at the beginning

of this chapter have a section on braid theory. In particular the books by Burde and Zi-

eschang [BZ85], Moran [Mor83], and Hansen [Han89], and papers by Birman [Bir74, Bir93]

are excellent places to learn more about braids. Somewhat outside mainstream mathematics

is an unusual application of braids in the theory of impossible figures [Cow74, Cow77].

12Jones discovered his polynomial by observing similarities between relations in the braid group and certain
algebraic systems [Jon85].
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10102 in a minimal projection

σ−1
1

σ−1
2

σ3

σ−1
2

σ3

σ−1
1

σ−1
2

σ−1
2σ3

σ3

σ1

↑
start here

Rearranged

σ−1
2 σ1σ3σ

−1
2 (σ−1

1 σ3)2σ−2
2 σ3

Figure 3.31: Construction of a closed braid from a knot diagram.
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3.5 Physical knot theory

Knot theory had its origin in physics. Carl Friedrich Gauss (1777–1855) made a brief excur-

sion [Gau33] into knot theory as part of his work on electrodynamics. Several decades later

Sir William Thomson (Lord Kelvin) (1824–1907) had the idea that the discreteness of differ-

ent knot types might correspond to the physical elements, and that each element might be a

“knotted vortex” in the ether13 [Tho67, Tho69, Tho75]. Peter Guthrie Tait (1831–1901), a

friend and colleague of Thomson, was motivated by this notion to begin the study of knots

from a mathematical perspective. This resulted in three remarkable papers [Tai76, Tai84,

Tai85] that can rightfully be considered the genesis of knot theory. Tait was also among

the first great knot enumerators, along with C. N. Little [Lit85, Lit89, Lit90, Lit00] and

the Rev. Thomas P. Kirkman [Kir84, Kir85]. Thistlethwaite [Thi85] provides an excellent

discussion of this exciting period in knot theory.

The theory of relativity and the disappearance of the ether evaporated all hope that

knots might have anything to do with the structure of atoms. Knot theory was then taken

over by the mathematicians and it developed along mainly algebraic lines. It remained this

way until Vaughan Jones’ [Jon85, Jon90] discovery of a new knot polynomial in 1985 initiated

a whole new era in knot theory, often referred to as a “renaissance”. Jones discovered

his polynomial while studying algebras related to statistical mechanics, a field apparently

unrelated to knot theory. Since Jones’ discovery a new field of study, physical knot theory,

has emerged. In a remarkable turn of events it seems that knot theory has much to teach

physics, and conversely the physics of knots has proved equally fascinating. The book by

Louis Kauffman [Kau91] and the references it contains will give the reader an indication of

the vastness of this field. For our purposes, we will be mainly concerned with areas where

topological drawing can be of use in physical knot theory. The following are a sample of

some of the topics that will be of interest in later chapters.
13Prior to Michelson and Morley [MM87] providing strong evidence for its non-existence the ether was

generally believed to be an extremely tenuous fluid that permeated the universe and acted as the medium in
which electromagnetic waves were carried.
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3.5.1 Energy models for knots

Part of the motivation for studying knot energies is the desire to find an optimal form

for a given knot type. Most people would agree that the optimal form for the unknot is

a round circle. For the trefoil, it is generally agreed that the forms shown in Figure 3.1

closely approximate the ideal14 “Platonic” trefoil. Beyond these cases, with a few possible

exceptions, there is not general agreement in the knot theory community on what constitutes

an “ideal knot”, despite claims to the contrary [KBM+96]. At a meeting of the American

Mathematical Society at the University of Iowa in 1996, Jun O’Hara outlined several desirable

features that any definition of “ideal shape” should obey. The first two of these have already

been mentioned. One further property is that the ideal shape for each knot type should be

unique; if this is not the case, then there should be at most finitely many different ideal

shapes for a given knot type.

It is with this quest for the ideal shape that knot energies come into play. To every

embedding of a knot, a specific value for the knot energy can be given. The ideal shape would

then correspond to the minimal value for this knot energy over all possible configurations for

the knot. It is also desirable that if a knot is given in a high-energy non-ideal configuration,

then a smooth deformation with a continuous change in the energy can bring it to the

minimal energy state. To prevent self-intersections that might change the knot type, all the

knot energy models studied in the literature include a term that causes the energy to go to

infinity as the knot approaches self-intersection. Although something akin to knot energies

have been studied in the literature for a long time, for example Milnor’s work [Mil50] on the

total curvature of knots, it wasn’t until Fukuhara [Fuk88] introduced an energy for polygonal

knots based on electrostatic repulsion that knot energies with the “blowup” property were

considered. O’Hara’s papers [O’H91, O’H92] placed the entire theory on a sound theoretical

basis with a new energy for smooth curves.

Of the several energy models being studied in the literature, some are applicable to the

smoothly embedded curves while others are appropriate for polygonal curves. As pointed

out by Simon [Sim94] a careful distinction between these two cases is necessary. This is

because energy models for the smooth case typically have a term that depends on curvature.
14In this section we will deviate from standard mathematical terminology and use “ideal” instead of “canon-

ical”; this is in keeping with the usage in several recent papers.
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Polygonal curves have an infinite curvature at the vertices, causing the energy models based

on curvature to blow up for the polygonal case.

In this thesis we will be concerned with only a few of the knot energies that have

been proposed. The most useful for our purposes is the minimum distance or MD energy

model defined by Simon [Sim94]. Let a knot K be defined by a n-sided polygonal curve in

R3 with vertex positions v0,v1, . . .vn−1, and let ek be the edge of the polygon extending

from vk to vk+1 (all numbers being taken modulo n). If MD(ei, ej) is the minimum distance

between any point on edge ei and any point on edge ej , then the minimum distance energy

of the knot K is defined to be

EMD(K) =
∑

ei,ej not
adjacent

‖ei‖ ‖ej‖
MD(ei, ej)2

(3.1)

This energy functional has a number of interesting properties. First of all, it is obviously

scale and orientation independent. Equally important and more difficult to show is that

there are only a finite number of knot types with energies below a given value [Sim94].

The second energy model we will consider is the symmetric energy proposed by Buck

and Orloff [BO93, BO95]. It has a concrete physical interpretation that views the knot as

a radiating tube of small radius. The symmetric energy is a measure of the amount of self-

illumination of the knot. A tightly bundled knot in a non-minimal configuration will have

a relatively larger self-illumination (and therefore higher energy) than the same knot in a

loose, near “ideal” configuration (where most of the radiation escapes to infinity). Let K be

a smooth knot parameterized by x(t) and let x, y be arbitrary points x(t), y(t) in K. With

these definitions, the symmetric energy can be written as [BSS98b]

ES(K) =
∫ ∫ |dx× r||dy × r|

|x− y|2 (3.2)

where dx = ẋ(t)dt is the line element at x and r = (x− y)/|(x− y)| is the unit vector in the

direction of x from y. Like the MD energy, the symmetric energy is scale and orientation

independent, and goes to infinity for self-intersecting curves.

The symmetric energy has an interesting relationship with the average crossing num-

ber of a knot. The average crossing number of a knot is the number of crossings in a

projections of the knot averaged over all viewing directions.15 Note that the average crossing
15At first glance, the average crossing number might appear as a candidate for a good energy functional for
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number is dependent on the specific embedding of the knot and is always greater than the

crossing number (which is an invariant of the knot-type). With the notation used for the

symmetric energy, we can write the average crossing number of K, ACN (K), as [KS94, BS97]

ACN (K) =
1

4π

∫ ∫
K×K

|r · dx× dy|
|x− y|2 (3.3)

For any knot K, the average crossing number provides a lower bound on the symmetric

energy [BS97, BSS98b]

ES(K) ≥ 4πACN (K) (3.4)

Since ACN (K) is always greater than the crossing number of K, and given that there are

only a finite number of knot-types of a given crossing number or lower, this equation implies

that below any specific value of ES(K), there are only a finite number of knot-types that

can realize K. Also, it implies that any knot with ES < 12π must be the unknot.

There are numerous other energy models for knots given in the literature. The MD en-

ergy and the symmetric energy are the only two of concern in this thesis. One other model

of great importance is the conformal energy, also known as the Möbius energy or the O’Hara

energy after its discoverer [O’H91]. From a purely mathematical point of view, as opposed

to the physical approach generally taken in this thesis, it is possibly the most significant of

all knot functionals. It has many interesting properties, one of which is invariance under

Möbius transformations. These are the generators of the conformal group on S3 (essentially,

inversions through two-spheres). The conformal energy has inspired much exciting work in

knot theory, of which [FH91, FH92, O’H92, Nak93, FHW94, KS94] is a sample.

3.5.2 Knot relaxation

With a knot energy functional established, one may use it to relax knots from highly-tangled,

high-energy states to “ideal”, (hopefully) minimal energy states. Techniques for achieving

such states may be roughly divided into approaches that use gradient-descent on the en-

ergy landscape, and are therefore deterministic, and those which employ non-deterministic

methods such as simulated annealing [KGV84] or other methods of random perturbation.

The deterministic approach is in some ways more appealing, since it would be extremely

knots, but we can rule it out because it does not diverge for self-intersecting curves.

49



interesting to discover that gradient-descent on a suitable knot energy always results in an

“ideal” conformation, without the need to resort to non-deterministic enhancements, which

often appear ad hoc. For more insight into these issues, the reader might consult the paper

by Buck and Simon [BS93] (and its sequel by Buck and Orloff [BO93]) or the literature

previously cited in the discussion of the conformal energy.

In the same paper where he proposes the MD energy, Simon [Sim94] uses a random

perturbation method to find knots of minimal MD energy. He obtains good results for a

few simple cases (unknots and trefoils). Also of interest in the paper is the proof that

the relaxation algorithm ensures that the MD energy converges to a local minimum, while

maintaining knot-type. In Simon’s relaxation algorithm, the knot energy is monitonically

decreasing. Wu [Wu96] has extended Simon’s method to occasionally take uphill moves in

the energy landscape. This allows his method to better escape any local minimum that is

not a global minimum. It should be pointed out that, at least for the MD energy of knots

with a “sufficient” number of vertices, there is no convincing evidence that there exist such

minima.16

Huang, Kauffman, and Grzeszczuk [HKG96, GHK97] also use the MD energy in a

simulated annealing approach. In a manner similar to one technique described in this thesis,

they augment a purely physical approach with extra-physical devices such as the adding

and deleting of vertices (while maintaining the total number of vertices) in the polygonal

knot and a “charge drop” method where several point charges are dropped at random about

the knot. These charges repel the regions of the knot they are close to, and aid in the

untangling of complicated conformations. Huang, Kauffman, and Grzeszczuk obtain excellent

results, especially for a particularly difficult unknot provided by Ochiai (originally described

in [Och90]). This unknot makes its appearance in this thesis at the end of Chapter 7.

Kusner and Sullivan [KS94] relax a discrete version of the conformal energy. They

use Brakke’s Surface Evolver program [Bra92] to perform conjugate gradient descent on the

energy. They find this method is effective at untangling unknots such as the Freedman unknot

(Figure 3.15). Kusner and Sullivan produce a table of energy-minimized knots and links to

eight crossings in an appendix. Upon casual inspection, many of these appear to be in far from
16Wu has discovered instances of polygonal unknots in non-global local minima for the thickness energy.

The thickness energy is (roughly) the diameter of the thickest piece of “rope” that could be made to follow a
given embedding of knot (see [BS97] or [BSS98b] for a precise definition).

50



ideal conformations, consisting as they do of many “tight spots”, i.e. regions where the knot

seems to be almost self-intersecting. However, as the authors point out, these are artifacts

of the Möbius invariance of the conformal energy, which effectively “doesn’t see” these tight

spots. Actually each picture in their table represents a class of embeddings of the knot in

R3 (more precisely S3), all of which are related via a Möbius transformation. Somewhat

pleasing is that the Borromean rings in their usual configuration (as seen on page 14 of this

thesis) are related under a Möbius transformation to their alternate configuration as three

mutually-perpendicular rings. Anybody searching for Platonic ideals in knot conformations

should be quite satisfied that minimizing the conformal energy arrives at both of these states

simultaneously, and that the two states are really one.

3.5.3 Lorenz knots

The Lorenz equations are a system of first-order differential equations

dx

dt
= σ(y − x),

dy

dt
= x(r − z)− y,

dz

dt
= xy − bz

that were originally proposed by Lorenz [Lor63] in a model of ocean currents. These equations

are a simple example of a dynamical system that exhibits chaos [Jac90]. Figure 3.32 shows

the flow on R3 for the Lorenz equations starting at several different positions (indicated by a

dot).17 It can be seen that the flow appears to be confined to a subset of R3. This subset, the

Lorenz attractor, is an object of considerable complexity and interest in its own right [Jac90],

however, the main concern is that there appear to exist orbits on the Lorenz attractor that

are closed loops [Wil83, FW85, Hol88, Kau91, Sul93]. In fact, the closed orbits that are not

unknotted are always prime knots [Wil83].

The Lorenz attractor seen in Figure 3.32 appears to be essentially two-dimensional.

Orbits proceed along one of two branches of this surface, then return to a region where they

again loop around one of the branches. The choice of which branch is next is chaotic. This

behaviour appears to be universal for many settings of the parameters σ, b, and r, although

the exact placement of the Lorenz attractor changes. Ignoring the particulars of the dynamics

and concentrating on the universal behaviour allows Lorenz knots to be studied abstractly,
17In Figure 3.32 the initial positions all lie on the attractor; empirical evidence indicates that the orbit

quickly converges to the attractor for any initial position in R3 [GHS97].
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(4.871361, 3.950401, 24.298647) (−2.989052,−4.755709, 14.660322)

(9.563312, 11.630175, 25.553707) (4.492606, 7.957013, 12.053719)

(−14.047131,−20.540337, 26.570669) (12.846601, 17.348150, 27.255182)

Figure 3.32: Flows on the Lorenz attractor starting from various initial values for (x, y, z)
and with σ = 10, b = 8/3, r = 28.
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(xy)2y x2yxy2

Figure 3.33: Example Lorenz knots along with their corresponding words.

by considering the sequence of branches taken during the orbit, as shown in Figure 3.33.

Here the symbols x and y denote consecutive trips around the left and right hand branches,

respectively. In this view, the Lorenz attractor is usually called the Lorenz template or

knot-holder. Other knot-holders exist, more complicated than the Lorenz template. Their

study has become an active area in knot-theory, and recently a book by Ghrist, Holmes,

and Sullivan [GHS97] has appeared devoted to the subject. For our purposes, the Lorenz

template will serve as an interesting method of constructing knots in Chapter 5.

3.6 Four dimensional knot theory

Knot theory is extendible into dimensions greater than three. The knots discussed so far are

all polygons (topologically 1-spheres S1) embedded in Euclidean three-space, R3. Usually

knot theorists compactify R3 by adding the point at infinity to form the three-sphere S3,

thereby simplifying certain aspects of the theory. Viewed this way, classical knot theory

studies embeddings of S1 into S3. Generalized knot theory considers embeddings of the

(n−2)-dimensional sphere Sn−2 into the n-dimensional sphere Sn. Knotting is a co-dimension

two phenomenon [Zee62]; all PL Sn−2 are unknotted18 in Sm for m > n. In this thesis, we

will ignore the difference between Sn and Rn with regard to the ambient space. We will

also restrict n to the two smallest values of interest, three and four, although diagrammatic

knot theory can be extended to five and even six dimensions [Lom83, Ada94]. In a similar

manner to knotting in R3, a knotted S2 in R4 is an embedding of the sphere (without self-

intersections) that cannot be smoothly deformed into the “standard” or unknotted S2. It is

probably clear that at least four dimensions are necessary to construct a knotted S2, since
18This is not the case for the linking of spheres, see [Zee62] or [Rol76, page 7].
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all smooth embeddings of S2 in R3 are topological equivalent.

There are numerous methods of constructing a knotted S2 in R4. We will consider

only two different techniques, both of which construct a knot in R4 from a lower dimensional

knotted S1 in R3. In Chapter 4 we will see another way to construct knots in R4. For proofs

that these methods do indeed yield a knotted S2 and more details on the construction, refer

to [Fox62, Rol76, KW77]. For terms of discussion, let (x, y, z, w) be coordinates for R4 and

let R3 be the subset of R4 with w = 0.

3.6.1 Suspension

If we consider a knotted S1, K, lying in R3, we can construct a knotted S2 by forming the

join19 of all points on K together with each of two points on the w-axis, say (0, 0, 0, +w) and

(0, 0, 0,−w) for any w > 0. That this forms a (non-self-intersecting) S2 is evident. That it

is non-trivially knotted is not difficult to prove, but is outside the scope of this thesis as it

relies on concepts developed in algebraic topology (see [Rol76] for a proof).

We will not see any pictures of suspended knots in this thesis; the manner in which

they are constructed causes them to essentially “look the same” as the S1 that they are

suspended from. Indeed, the two knots share many of the same topological properties [Rol76].

One interesting point to note is that the suspension process may be iterated, yielding higher

and higher dimensional knots [Rol76]. A down side of suspension, however, is that it doesn’t

work for links because the suspended link is self-intersecting.

3.6.2 Spinning

Another problem with suspended knots is that they are not smooth at the poles. While

this might not seem like an important fact, it is actually not possible in general to smooth

out the poles [Rol76]. One way to get a smoothly embedded sphere in R4 is to spin a knot

in R3 about a plane in R4 [Rol76, KW77]. Before considering exactly what this means,

consider Figure 3.34 where a knotted open-ended arc is shown with its endpoints sitting on

the y-axis. Let us first consider what it means to spin the knot about the y-axis in R3. If K

19The join of two points is the line segment joining the two points, together with the points themselves.
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z
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Figure 3.34: Construction of a spun knot by spinning a knot about a plane in R4.

is the knotted arc, then the spun arc can be described as

Spin3D(K) = {(r cos θ, y, r sin θ) ∈ R3 : (x, y, z) ∈ K, 0 ≤ θ < 2π, r = {x2 + y2} 1
2 }

where r is the distance inR3 from a point on K to the y-axis. Since K is an arc, this operation

will sweep out a surface, an S2, in R3. In general the surface will be self-intersecting; this

is necessarily true if K contains a knotted part as shown in the figure. However, we can do

the spinning in R4 instead, and consider the spun knot

Spin(K) = {(x, y, z cos θ, z sin θ) ∈ R4 : (x, y, z) ∈ K, 0 ≤ θ < 2π}

which produces a knotted S2 in R4, a spun knot, if the original arc was knotted in R3 [Rol76].

Spinning may be extended in a number of ways. The simplest for our purposes is

twist-spinning, originally due to Zeeman. Referring again to Figure 3.34, imagine completely

enclosing the knotted part of K by a sphere in such a way that K intersects the sphere

only at the north and south poles, and that the sphere doesn’t intersect the y-axis. Now

during the spinning procedure, perform n complete rotations of the sphere (including the

interior of the sphere) about its axis. Note that these rotations should be considered as

taking place in R3. The resulting surface, still a non-self-intersecting S2, is called a n-twist

spun knot. Remarkably, if n = ±1, then the twist spun knot is an unknot, for any initial

knot K [Rol76]! However, the 2-twist spun knot is distinct from the ordinary (or 0-twist)

spun knot. More complex deformations than mere twisting can be performed which yield

still more complicated knots in R4. Kawauchi [Kaw96] gives a good exposition as well as the

paper by Roseman [Ros89].
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Chapter 4

KnotPlot

KnotPlot is a program for visualizing and interacting with 3D and 4D knots. Its features

are far too numerous to describe in detail outside of a complete user’s manual. Instead, this

chapter will serve as an introduction to the program as well as discuss issues that are not

directly related to topological drawing. Of these the most important is graphical display and

user interaction with the visualization aspects of the program. Also, this chapter describes

how 4D knots are constructed from 3D knots using KnotPlot.

The reader is urged to refer to the KnotPlot manual [Sch97b] for more information

and detailed examples of usage. Appendix B contains information on how supplementary

material related to this thesis may be obtained. This includes all experimental data described

in the thesis and interactive demos, as well as the KnotPlot commands that generated most

of the figures in this thesis.

In order to provide some context for discussion, Section 4.1 of this chapter contains an

overview of KnotPlot. Two major topics, the creation of embeddings of knots and links and

the refinement of those embeddings, are introduced briefly. These topics will be covered fully

in Chapters 5 and 7 respectively. For the purposes of the remainder of this chapter, we will

assume that a knot is already given and that the user is primarily interested in “visualizing”

it rather than manipulating the embedding to achieve a certain result.
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4.1 Overview of KnotPlot

KnotPlot is an interactive program designed to run on Silicon Graphics high-end computer

graphics workstations using the GL graphics library. The program is also available for

IBM RS/6000 workstations that support the GL library, and to a limited extent on Sun

workstations. KnotPlot is currently installed at more than two dozen institutions and is

being actively used as a research or visualization tool [KBM+96, MSS97, Sed96, KOP+97,

BSS98b, CDW98]. A planned port to OpenGL [NDW93] and Java will allow the program

to run on many less costly personal computers. This will greatly increase the program’s

availability, given the rapidly improving graphics performance of these machines and the

fact that many of them already support OpenGL.

4.1.1 Creating knots and links

KnotPlot is easiest to use as simply a viewer of knots and links. To facilitate this aspect,

the program has a large number of knots and links “built-in” and ready for display:

Knot catalogue — The complete Appendix C of Rolfsen’s book Knots and Links [Rol76]

is on-line (384 knots and links). Many other knots of a special nature are also included.

Examples are composite knots, knots that have a special name when in a particular

configuration (an example is the “Borromean rings” shown on the bottom of page 14),

and ornamental knots (such as those in [Ash44] or [Bai73]). This database alone makes

possible many opportunities for experimentation.

Automatic construction — Knots and links may be constructed using the tangle notation

developed by Conway ([Con70] and Chapter 3). For this purpose, KnotPlot uses a

tangle calculator that implements all of Conway’s original methods and also extends

the basic notation. The tangle calculator may be used either in an automatic fashion

or interactively.

Special knots and links such as knot chains, torus knots (and links), and Lissajous knots

[BHJS94] are also constructed automatically. A selection of “primitive” knot types,

such as open straight-line knots and unknots are provided for use in other constructions.

Knots may be created from a braid word or a Dowker code (see Chapter 6) describing
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the knot. Chapter 8 has an example of a “real-world” application [CDW98] where this

technique proved useful in constructing and visualizing rather complicated knots.

Although the above allow a user to generate and display a huge number of knots and

links, there are many cases where it is necessary or desirable to create something new or

different. Therefore KnotPlot allows:

Sketching — Arbitrary knots may be sketched “freehand” in 3D, marking the location of

individual points along the knot (called beads) with the mouse and using the mouse

buttons to indicate over- and under-crossings. Several modes of sketching are available,

depending on the degree of exactness required.

Knot transformations — Knots may be transformed into new knots via a number of

procedures. This is used to create satellite knots, doubled knots, cabled knots, and

Lorenz knots.

The above methods for creating knots and links are the subject of Chapter 5.

4.1.2 Refining the embedding

After the embedding of a knot is specified, a user may use KnotPlot to refine that embedding

in a number of ways:

Knot relaxation — A given knot may be relaxed into a smoother or simpler configura-

tion by applying a system of forces to it. During this relaxation, collision checking is

generally performed to ensure that the knot type does not change. Users can turn off

collision checking to improve relaxation speed in cases where it is simple to check the

knot type by inspection.

Interactive manipulation — Knots may be interactively modified by direct manipula-

tion. This can take the form of “dragging” the knot around in three dimensions or

by selectively applying forces to local regions of the knot. Other forms of interactive

manipulation involve cutting and splicing operations, duplicating and deleting com-

ponents, and rotating, scaling, or translating one component with respect to another.

Higher level operations such as knot mutations are also possible.

These methods for refinement are fully described in Chapter 7.
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Bowline “Turk’s head” knot Ashley’s Bend

Figure 4.1: Open ended “everyday” knots.

4.1.3 Computation of topological and geometric properties

The Alexander polynomial, HOMFLY polynomial, writhe, average crossing number, and

thickness of knots and links can be computed using KnotPlot, as well as the Dowker code of

proper knots and linking numbers of proper links. The polynomial calculations are examples

of the use of KnotPlot in conjunction with other software. KnotPlot computes informa-

tion about the crossings (essentially the Dowker code, extended to handle the link case as

well) and passes it on to the polynomial calculation program which returns a value. For

the Alexander polynomial, a small Mathematica [Wol91] program is used to compute the

determinant of a matrix of polynomials. This is a needlessly wasteful step, and this author

plans to implement a more efficient method in the future. The HOMFLY polynomial is

computed using a program written by Robert Jenkins. The program is quite fast, however,

it occasionally fails for reasons unknown. Usually a failure is obvious, but on rare occasions

it is not and the program returns a wrong value. Fortunately, Jenkins provides his source

code, so the problems could possibly be fixed. On the other hand, the Alexander polynomial

program is much more robust, although considerably slower.

4.1.4 Open knots, knotted graphs

Two object types that are extensions to classical knot theory are also supported. The first

of these are “open knots”, i.e. what are normally considered knots by non-mathematicians,

as shown in Figure 4.1. Of course, these sorts of diagrams have been seen previously in this

thesis, especially in Section 3.2. Topologically, all such objects are identical, being merely

embedded line-segments. However, as soon as we consider knots to be physical objects, as
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62 viewed as a graph θ-curve “handcuff” graph

Figure 4.2: Knotted graphs.

we did in Section 3.5, then the fact that such an object may be knotted locally becomes

significant.

The second type of objects are knotted graphs. The theory of knotted graphs is an

extension of knot theory, classical knot theory being the “simple” case with one node and one

edge, the edge being knotted as shown on the left in Figure 4.2. Conway and Gordon [CG83]

initiated the theory of knotted graphs1. Simon’s paper [Sim87] contains the beginnings of an

enumeration of knotted graphs, a process that is made complicated by the large number of

cases for even simple graphs such as the θ-curve shown in Figure 4.2. Much of classical knot

theory can be extended to graphs; for example Kauffman [Kau89] discusses Reidemeister

moves on graphs, as well as a theory of topological invariants for knotted graphs. Graphs

(and open knots as well) may be relaxed just as ordinary classical knots, subject to the same

collision checking algorithms.

An older form of graph representation is also implemented in KnotPlot, which proves

useful in relaxing the quad graphs of Chapter 6. These graphs are implemented using an

adjacency matrix. This is appropriate for the quad graphs as they generally have a large

number of edges in proportion to the number of vertices. No collision checking is performed

for these types of graphs, as none is needed for the technique used in Chapter 6. For most

other purposes, this older implementation of graphs should be considered obsolete.
1Chemists and biologists had examined knotted graphs as models for knotted or linked molecules prior to

[CG83], however, [CG83] can be considered the beginning of the knot theory of graphs.
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Beads and sticks mode Smooth tubes mode

Figure 4.3: Two major display modes of the same knot. The figure on
the right shows the polygonal surface constructed from the underlying
PL representation shown on the left.

4.1.5 Compatibility with other systems

KnotPlot exports surface models to a number of software platforms, including ray-tracing

packages such as Alias STUDIO [Ali98], and surface modelling tools including AutoCAD [Aut97]

and Dragon [For97]. In addition, knot diagrams may be exported as METAFONT [Knu86]

programs. The METAFONT output feature is largely unexplored, being intended for those

adventurous users who might wish to create a mathematical knot typeface for use in type-

setting systems such as TEX or LATEX. A simple example of this application is discussed

in Chapter 8. As this thesis illustrates, PostScript pictures in numerous flavours may be

generated directly using KnotPlot. Surface models exported from KnotPlot have been used

in surface reconstruction studies [HDD+92, HDD+93, GMW97] and PostScript figures from

KnotPlot have appeared in [Wu92, MSS97, CDW98].

4.2 Representation and display

Up to now the issue of exactly how knots are displayed to someone using KnotPlot has

not been discussed in this thesis. KnotPlot has two major display modes. Any knot may

be displayed in either a “beads and sticks” mode or in a “smooth tubes” mode as shown

in Figure 4.3. These display modes correspond to the piecewise linear (PL) and smooth
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Figure 4.4: Smooth surface constructed from polygon. The solid black
curve is the Bézier spline that interpolates and is tangent to the poly-
gon at the midpoint of each edge.

(differentiable or DIFF) categories in topology. As noted in Chapter 3, these categories are

equivalent in R3. However, from an implementation standpoint the PL approach is by far

the simpler of the two (this will become more apparent in Chapter 7 with the discussion on

collision avoidance). Since no important aspects of knot theory are lost by adopting the PL

point of view, KnotPlot uses the beads and sticks mode as its internal representation for

knots. However, many people prefer the “smooth look”, with the understanding that the

apparently smooth curves and surfaces really represent PL objects. This is common practice

in textbooks on PL topology, for example. Because of this preference, knots are generally

displayed to the user in the smooth tubes mode.

It must be emphasized that the smooth surface created is merely an artifact of the

underlying PL representation; it is intended for display purposes only. In certain situations,

the smooth surface may not even be topologically “correct”. For example, it may contain

self-intersections if the user has selected a large value for the tube radius. The responsibility

is on the user for insuring that the surface represents a valid mathematical object (although

KnotPlot can provide assistance in making this judgment). The underlying PL knot, in

contrast, is always guaranteed to be a valid representation of the knot type expected.

Figure 4.4 shows the two steps in going from the PL knot to the smooth surface. The
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first stage is to construct a smooth interpolation of the polygon. For this a simple Bézier

curve [Knu86] that interpolates the midpoints of each polygonal segment is used. The control

points for the Bézier curve are chosen so that it is tangent to the polygon at the midpoint of

each edge of the polygon. For three consecutive vertex locations a, b, and c, let v1 be the

midpoint of edge ab and v4 be the midpoint of edge bc. Then the Bézier curve between v1

and v4 is given by

p(t) = (1− t)3v1 + 3(1 − t)2tv2 + 3(1− t)t2v3 + t3v4 for 0 ≤ t ≤ 1

The location of points v2 and v3 is somewhat arbitrary; as long as v2 lies on the ray extending

from v1 to b, the Bézier segment will be tangent to the edge ab at v1 (similarly for v3). The

selection

v2 =
1
3
v1 +

2
3
b v3 =

1
3
v4 +

2
3
b

produces good results. The curve so obtained has several desirable properties. One is the

convex hull property ; each Bézier segment is contained within the convex hull of its defining

control points. This ensures that the smooth interpolant never strays “too far” from the

original polygon. Another nice property is that the smooth curve created by splicing together

all the Bézier segments is “mathematically close” to the original knotted polygon in that the

two have many points that coincide both in location and tangent direction. One minor point

is that, in general, the smooth curve will have curvature discontinuities at the endpoints

of each Bézier segment. Such discontinuities are essentially impossible to see in typical

situations and have no effect on any subsequent calculations.

After the first stage of finding a smooth interpolating curve, the thick tubular surface

is generated. These types of surfaces, sometimes called generalized cylinders [SB84], are

commonly occurring objects in computer graphics. Generalized cylinders are surfaces that

result from extruding an arbitrary closed contour along a smooth curve, the contour forming

the cross-section of the generalized cylinder. The surfaces constructed in KnotPlot are simple

examples of generalized cylinders, where the contour is a regular polygon that lies in the

normal plane at each point along the curve. To polygonalize the surface, it is necessary

to align consecutive circular cross-sections. A first approach to doing this might define

a sequence of coordinate systems based on the normal and binormal vectors of the Frenet

frame (see any elementary book on differential geometry). In the case where the smooth curve
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Figure 4.5: Problems resulting from using the Frenet frame.

has a non-zero and continuous curvature this is an acceptable solution. However, knots in

KnotPlot often have several consecutive co-linear vertices. The smooth interpolant to such

knots will also have segments of zero curvature where the Frenet frame is not defined. In

addition, the Frenet frame may twist around the curve at inflection points, making it difficult

to construct the generalized cylinder easily. These difficulties with the Frenet frame are well

known, as Shani and Ballard point out in their survey of generalized cylinders [SB84]. A

typical knot with a tubular surface drawn based on the Frenet frame is shown in Figure 4.5.

The surface shown is clearly unacceptable. In addition to gross defects in the surface due to

zero points in the curvature, the surface appears to twist around excessively. These problems

occur in this case even though the Frenet frame is well defined at each point along the knot.

For the reasons given above, a different method, parallel transport, is used instead to

generate a sequence of coordinate frames along the smooth curve. To compute this sequence

involves making an arbitrary initial choice for the orientation of the coordinate frame at one

point on the smooth curve. Let the unit tangent vector to the curve at the point p0 be t0 and

let u0 be an arbitrary unit vector perpendicular to t0. Then u0 and v0 = u0 × t0 define the

initial coordinate frame. From this frame a circular cross-section of the generalized cylinder is

constructed that corresponds to the point p0. The coordinate frame (un,vn) corresponding
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Figure 4.6: Parallel transport along the space curve.

to a point pn further along the curve is obtained by parallel transport of (un−1,vn−1) along

the curve and may be computed as

un =
tn × vn−1

‖ tn × vn−1 ‖ vn = un × tn

where t̄n is the unit tangent vector to the curve at the point pn (see Figure 4.6). These

equations are strictly valid only in the infinitesimal limit, however, in practice they produce

the required results for all cases of interest in KnotPlot. Figure 4.7 shows two typical exam-

ples. The trefoil has a section of co-linear beads, an instance of a case where using the Frenet

frame would lead to unpredictable results. The second example in Figure 4.7 can be directly

compared Figure 4.5, where the same knot led to poor results when using the Frenet frame.

It should be noted the parallel transport is not parallel transport in Euclidean space

R3. Rather, to understand the space in which the parallel transport takes place we have to

consider the normal bundle associated with the space curve. The normal bundle is a type

of manifold called a fibre bundle. It consists of a base space, here the knot itself, together

with a collection of fibres. Every point in the base space has an associated fibre, in this case

the normal plane at that point on the knot. This normal bundle is a perfectly good three

manifold, and it can be endowed with a natural metric from which it is possible to derive

a notion of parallelism. Viewed in this way, as parallel transport in the normal bundle, the

coordinate frames shown in Figure 4.7 seem like natural choices.
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Trefoil with straight section Smoother knot 63

Figure 4.7: Transportation of the coordinate frame along a knot.

The astute reader familiar with differential geometry may protest at this point. In

Figure 4.7, the vector returns to its original orientation after it has been transported through

a closed path. This does not happen in general for parallel transport around a closed path

in a non-euclidean manifold. It would not occur in this case either except that a small extra

twist has been added between successive coordinate frames shown in Figure 4.7 so that the

vector matches up with its initial orientation after being transported around the curve. This

extra twist is not ad hoc, but rather necessary as a result of the non-euclidean nature of the

normal bundle.

A final point is that our method is similar (if not identical) in effect to the rotation

minimizing frame discussed by various other researchers [SB84, Klo86, BR91], although our

derivation does not depend on that work.

4.3 Higher dimensional knots

This section deals with the construction, display, and interaction with higher dimensional

knots. Of these operations, the last two lie outside the scope of topological drawing as dis-

cussed in this thesis. The construction of higher dimensional knots in KnotPlot involves
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topological drawing in that these knots are always constructed from ordinary knots in R3.

After they are constructed, no topological manipulation is done with them. They should

be considered rigid objects in 4D in that KnotPlot doesn’t (yet) permit interaction or ma-

nipulation on them. Applying the techniques of Chapter 7 to knots in 4D offers exciting

mathematical possibilities. This extension is discussed as potential future work in Chap-

ter 9.

4.3.1 Construction

KnotPlot supports suspended and twist-spun knots via direct construction from a single 3D

knot. Arbitrary surfaces in R4, possibly knotted or non-orientable, may be constructed with

external programs and loaded into KnotPlot for viewing. All surfaces are represented as

collections of quadrilaterals in R4, where a sufficient quantity of quadrilaterals is used so

that any deviation from the intended surface (as well as the issue that the quadrilaterals

might not be planar) is visually negligible.

Suspended knots

Construction of these knots is trivial. Given a knot K defined by an n-sided polygonal curve

in R3 with vertex positions v0,v1, . . . vn−1, the suspended knot in R4 is given by

Susp(K) = (
⋃

i
t+i ) ∪ (

⋃
i
t−i )

where t±i is the triangle in R4 with vertex locations (vi, 0), (vi+1, 0), (0, 0, 0,±w) (subscripts

being taken modulo n), and w an arbitrary positive real number. For display purposes these

triangles are subdivided into quadrilaterals that degenerate into triangles at the “north and

south poles” located at the points (0, 0, 0,±w).

Spun and twist-spun knots

Ordinary spun-knots are a special case of twist-spun knots, for the case of zero twist. To

construct a spun-knot, the user interactively positions the “spin plane” using the mouse

buttons until it is situated as shown in Figure 4.8, with a knotted arc on one side of the

plane and a simple arc on the other side. During this interaction, the spin plane “slides”

along the knot, always intersecting the knot in at least two places. The three mouse buttons
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Figure 4.8: Positioning the “spin plane”.

are used to modify these points of intersection as well as the angle the normal to the spin

plane forms to the axis between the two points. KnotPlot ensures that spin plane intersects

the knot at only two points, otherwise the spun surface will not in general be a sphere.2 The

spin plane defines a coordinate system on R3; the z = 0 plane being the spin plane itself and

the z coordinate the perpendicular distance from the spin plane. Let the knot K be given

as before with ei the edge of K extending from vi to vi+1, then the spun knot in R4 is the

union of all spun edges of K,

Spin(K) =
⋃

i
Spin(ei)

The Spin of an edge e extending from the coordinates (xa, ya, za) to (xb, yb, zb) is a collection

of m quadrilaterals given by

Spin(e) =
⋃m

s=1
q(s, e)

with q(s, e) the quadrilateral in R4 specified by

q(s, e) = (xa, ya, za cos(2πs/m), za sin(2πs/m)→
(xb, yb, zb cos(2πs/m), zb sin(2πs/m)→
(xb, yb, zb cos(2π(s + 1)/m), zb sin(2π(s + 1)/m)→
(xa, ya, za cos(2π(s + 1)/m), za sin(2π(s + 1)/m)

where the arrow indicates the cyclic ordering of the vertices. In the above, the (x, y, z)

coordinates refer to coordinate frame defined by the spin plane. The value of m may be

selected by the user; higher values of course produce smoother surfaces. Twist-spun knots
2An interesting case is where the spin plane doesn’t intersect the knot at all. In this case a spun torus

results. Construction of spun tori is not possible with the current software, but is a straightforward extension.
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Figure 4.9: Spun figure-eight knot.

Figure 4.10: +1-twist spun trefoil.
Although not apparent here, this 2-
sphere is unknotted in R4.

are constructed in a similar manner, the user specifies the number of twists in addition to

the location of the spin plane. We will not give the equations for the construction here, as

it is straight-forward, being a simple rotation in R3 that is applied to the vi as the spinning

takes place (see Section 3.6.2).

4.3.2 Interaction

The interaction with higher dimensional objects in KnotPlot is fairly simple. Only global

interaction (rotation) is provided. The user selects rotation angles by means of sliders. This

is quite cumbersome to use and it can take a long time to find a satisfactory orientation

for an object. Navigation in 4D orientation space can be expected to be rather difficult,

considering its high dimensionality. It takes six angles to specify an orientation in 4D. Three

of these are applied to the 4D object prior to its projection from 4D to 3D. The choice of

which planes the rotations occur in is user-selectable.
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4.3.3 Display

KnotPlot supports a simple display model for the visualization of higher dimensional objects.

The 4D objects are projected to 3D via either orthographic or perspective projection follow-

ing an initial rotation in 4D. The resulting 3D object is then rendered with standard display

techniques. This usually results in a 3D object that self-intersects in the case of knotted

spheres. The problems with adequately rendering such a surface have occupied much of the

effort in the literature [AB90, BF88, HH91, HH92, HC93, Ban92, Ban93]. It is the opinion of

this author that perhaps too much effort is expended with regard to the “proper” rendering

of surfaces in 4D. Just as in ordinary 3D modelling, a wire-frame is often more descriptive of

the nature of the surface than a shaded surface representation, although the latter is prob-

ably more interesting visually. Nevertheless, KnotPlot does support two modes of surface

rendering. The first of these is a form of pseudo-transparency. Since real-time transparency

is practically impossible in the general case on currently available graphics hardware, trans-

parency is “faked” by exploiting features of the graphics frame buffer. The closest physical

analogue to this form of rendering would be a mostly-transparent luminescent, non-refracting

material — a “jelly-fish” perhaps. KnotPlot does support several different methods of wire-

frame rendering. The most interesting of these is where the wire frame is coloured according

to the dimension that is lost in the projection from 4D. It is often easy to tell that an

object such as a knotted sphere that may appear to be self-intersecting in 3D is actually not

self-intersecting in 4D.

Figures 4.9 and 4.10 show wire-frame renderings of two knots (actually only one is

knotted), after a perspective projection has been applied from R4 to R3. KnotPlot’s other

surface rendering mode uses the ribboning method described in Section 2.5. Figure 4.11

shows an example of a +2-twist spun knot, starting from a trefoil in R3.

Finally, it is possible to view a 4D knot in KnotPlot using the method of movies.

This is beautifully illustrated in [Fox62, FR86, Lom83] The idea is to consider a sequence

(movie) of 3D slices through the 4D knot. If the knot is in general position in R4 then each

of these slices will be a union of circles (perhaps knotted or self-intersecting) in R3. This is

analogous to the situation of having an embedded sphere in R3. If one takes a sequence of

2D slices through the sphere, each slice will intersect the sphere in a union of circles (contour
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Figure 4.11: Projection of a +2-twist spun trefoil knot. The surface has transparent bands
along lines of constant latitude.
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lines). In the higher dimensional case, we have the extra possibility that the circles may be

knotted or linked. Figure 4.12 shows an example of a movie for a spun trefoil. Unfortunately,

the rendering on paper makes it difficult to clearly see what is happening. The parameter

t can be thought of as “time”; it simply specifies the location of the 3D slicing hyperplane.

From t = −7 to t = 4 the slice consists of two unlinked circles, they approach each other

closely, and at t = −3 a “fusion” takes place. At this stage, the slice is a knotted graph in

R3. Proceeding to t = −2, a “fission” occurs and the slice becomes a Square knot in R3.

From this point on until t = 0 the slice remains a Square knot, and after t = 0 the entire

sequence of slices occurs in reverse order.

Figures 4.13 and 4.14 show similar movies for the +1-twist and +2-twist cases, re-

spectively. Here the deformations are somewhat more interesting. Also, the slice at t = 0 in

Figure 4.13 is a Square knot again, so we can see that a cross-section of an unknotted sphere

in R4 can be itself knotted (recall that all +1-twist spun knots are unknotted).

This method can also be used to construct arbitrary knotted 2-spheres in 4D including

those which are neither twist-spun nor suspended. Some examples of these are shown in

[Fox62, FR86, Lom83]. A future extension of KnotPlot will allow such constructions directly

from a sequence of knots in R3.
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t = −7 t = −6 t = −5

t = −4 t = −3 t = −2

t = −1 t = 0 t = 1

t = 2 t = 3 t = 4

t = 5 t = 6 t = 7

Figure 4.12: Movie of a 0-twist spun knot.
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t = −7 t = −6 t = −5

t = −4 t = −3 t = −2

t = −1 t = 0 t = 1

t = 2 t = 3 t = 4

t = 5 t = 6 t = 7

Figure 4.13: Movie of a +1-twist spun knot.
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t = −7 t = −6 t = −5

t = −4 t = −3 t = −2

t = −1 t = 0 t = 1

t = 2 t = 3 t = 4

t = 5 t = 6 t = 7

Figure 4.14: Movie of a +2-twist spun knot.
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Chapter 5

Creating an initial embedding

This chapter is the first of two that describe methods for creating initial embeddings of

knots and links. The methods described in this chapter are generally interactive, although

they may rely on external software that performs its function without user interaction. In

contrast, the technique described in Chapter 6 is almost entirely automatic and the user has

little choice in the form of the actual embedding.

5.1 Knot catalogue

KnotPlot has available online over 1000 preconstructed knots1 for use in visualization or

experiments. About 80% of these are prime knots, the rest are “special” in some way, either

by being interesting mathematically (for example common composite knots such as the square

and granny knots), or by having a unique importance outside of knot theory. This latter

group includes many decorative knots. Also in the catalogue, although created on demand,

are several infinite classes of knots, notably the torus knots and knots obtained via closing a

braid.

This large data set makes KnotPlot an interesting and useful tool for displaying many

different knots even if no topological drawing is ever done. This could be useful for exploring

knot theory, or for producing illustrations to be used in publications. Another use of the

catalogue is as a source of “raw material” for experiments using software other than KnotPlot.

The papers by Katritch et al. [KBM+96, KOP+97] and Mao et al. [MSS97] largely fall into
1We remind the reader of our convention of using the term “knot” to encompass both knots and links.
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this camp, although each of these research groups also used KnotPlot as a construction and

visualization tool in addition to using its data set.

5.1.1 Preconstructed knots

Prime knots

KnotPlot users have access to the entire catalogue shown in Appendix C of Rolfsen’s book

Knots and Links [Rol76]. The original data for these knots was entered into a computer by

Margaret Flunkert and kindly provided by Prof. Rolfsen. The knots were relaxed according

to the methods to be described in Chapter 7. Many knots occur in the catalogue in several

good diagram fully relaxed minimal stick

Figure 5.1: Three different views of the knot 10124.

forms. In Figure 5.1 we see the knot 10124 in three different forms. The first of these is

an embedding that produces a “good diagram”; i.e. a minimal projection for the knot that

contains only the allowed crossing types shown in Figure 3.2. The second version of 10124

shown is less satisfactory as a 2D projection but is a “better” 3D embedding, having been

fully relaxed using the dynamics of Chapter 7. Typically, knots with higher crossing numbers

(greater than six or seven) will not produce good 2D projections when fully relaxed. This

observation is by no means rigourous or exhaustive and merits further study. The final

version of 10124 is a minimal-stick candidate in a configuration that minimizes the minimum

distance energy (see Section 3.5). This configuration has several curious symmetries that are

discussed in more depth in Chapter 8.

On-going work is producing KnotPlot representations for the 281 10-crossing links

with two or more components given by their Conway notation [Con70], although any one of

these can be created on demand in KnotPlot by typing the Conway notation directly. As for
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the rest of the vast host of knots now catalogued by researchers [Thi97, Hos97], the user of

KnotPlot must rely on the methods presented in Chapter 6 to construct an embedding for

visualization purposes.

Special knots

The knot catalogue contains a large collection of knots which are not necessarily prime, but

which have other qualities that set them apart. Some of these we have seen before, such

as the square and granny knots of Chapter 3. Also included are knots that have a specific

mathematical interest, such as the four-component Brunnian link2 shown in Figure 5.2. Many

four component Brunnian link Celtic knot Ashley knot #2445

Figure 5.2: Some “special” knots from the catalogue.

of these knots are given as examples in Knots and Links [Rol76]. Other knots of mathematical

interest in the catalogue are the 19 non-trivial knots of 16 or fewer crossings that have a trivial

Alexander polynomial (constructed from data in [Thi85]), hyperbolic knots with “simple”

complements (from the study of [CDW98], see Chapter 8), and numerous other examples

culled from many papers in knot theory.

Other special knots in the catalogue are purely “decorative”, such as the Celtic knot

and the Ashley knot #2445 in Figure 5.2, taken from [Bai73] and [Ash44], respectively. Even

though these knots are decorative, because of their symmetry they serve as useful examples

of the construction techniques discussed later in this chapter.
2A Brunnian link is a non-trivial link that becomes trivial with the removal of any one component. Another

example is the Borromean rings shown on page 14.
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5.1.2 Special classes of knots

Torus knots

Torus knots form an infinite family of inequivalent knots that in many ways are the “simplest”

class of knots. For example, properties such as the unknotting number, crossing number and

the braid index are known for all torus knots, whereas these properties are often difficult to

compute for “typical” knots. Torus knots are those knots that exist as simple closed curves

on the surface of a standardly embedded torus as shown in Figure 5.3. An (N,M)-torus

Figure 5.3: Torus knot K3,11 as a simple closed curve on the surface of a torus.

knot, denoted by KN,M is one that winds about the core of the torus N times while winding

about the axis of the torus M times. The example shown in Figure 5.3 is for N = 3 and

M = 11. If N and M are co-prime, non-zero integers, then a proper knot results. Unlike the

vast majority of knots, the general torus knot KN,M has a simple parametric description

x = r cos(Nθ), y = r sin(Nθ), z = d sin(Mθ), r = R+d cos(Mθ), for 0 ≤ θ < 2π. (5.1)

where R and d are the major and minor radii of the torus. If N and M are not co-prime, the

convention is that KN,M represents the p-component link where p is the greatest common

divisor of N and M . The torus link consists of p identical copies of the torus knot KN/p,M/p,

each offset by an angle 2π/p from one another.

One initially surprising fact is that KN,M and KM,N are equivalent knots. Upon

reflecting on Figure 5.3 and the method of construction, this should become obvious.3 Torus

knots have many other surprising properties, for example the crossing number of KN,M is
3Think of “unwrapping” the torus to form a rectangle in the plane with opposite edges identified, and

consider the manner of curves drawn on the rectangle representing KN,M and KM,N .
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known to be min((N(M−1),M(N−1)), and the stick number of KM−1,M is 2M [ABGW97].

The crossing number result allows us to generate a “zoo” of torus knots in order of (non-

decreasing) crossing number, as shown in Colour Plate 1. Several familiar knots are torus

knots, namely the Hopf link and the trefoil (the unknots K1,1 and K1,2 are not drawn). An

excellent and rigourous discussion of torus knots appears in Murasugi’s book Knot Theory and

Its Applications [Mur96]. Therein the reader will discover that torus knots are the exception

rather than the rule, and in a certain sense the torus knots have been completely classified.

However, as the crossing number increases, the torus knots constitute an asymptotically zero

fraction of all knots. Hence essentially all knots remain “difficult” to classify.

Knots from closed braids

Section 3.4 showed several examples of braid diagrams. General braids are easily created

with KnotPlot by simply typing in the braid word. Since all knots can be represented as

the closure of some braid [Ale23], in principle this method could be used to generate any

knot. The difficulty is that it is usually not easy to determine the braid word corresponding

to a given knot. Also, the knots obtained from closing a braid are often not in a minimal

projection.

Random knots

KnotPlot has several methods for creating random knots. These are interesting in theoretical

studies of the random knotting of long polymer chains of molecules [DPS, Pip89]. Figure 5.4

shows an example of a self-avoiding walk on a cubic lattice. Joining the endpoints results in

a trefoil knot.

Simple knot primitives: chains, lines, and circles

KnotPlot has several methods to create simple knot types, such as knot chains with an

arbitrary number of components as shown in Figure 5.5 or (even simpler) knot primitives

such as (open-ended) lines and unknots (geometric circles) of various sizes and orientations.

With the exception of the knot chains, these primitives are not of interest in themselves,

but rather they are building blocks for more complicated objects. A specific example of
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Figure 5.4: Self-avoiding random walk on the cubic lattice (1022 steps). Joining the endpoints
in a straight line results in a left-handed trefoil.
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Figure 5.5: Linked chain of 14 unknots.

complicated knots being assembled from a collection of primitives is given in the section on

Lorenz knots later in this chapter.

5.2 Tangle calculator

KnotPlot’s tangle calculator is a stack-based calculator for tangles. Elements on the stack

are four-input tangles of arbitrary complexity. The stack may contain any number of tangles

A, B, C . . . . The stack is imagined “growing upward” with the most recently created tangle, A,

being on the “bottom” of the stack. The tangle calculator does not use the Conway notation

directly. The conversion from the Conway notation to tangle calculator commands is a simple

parsing problem the details of which are discussed in the KnotPlot manual [Sch97b]. Tangle

calculator commands can be (and often are) entered directly without using the Conway

notation. This is useful for users who are not sure of the interpretation of a given string

in the Conway notation (which is a little tricky in certain ways), but who find the tangle

calculator intuitive and simple. Also, it allows for the creation of knots which do not have

any corresponding Conway notation.

The tangle calculator has two basic modes of operation. The first is a direct mode

where the user types in a “tangle string”, which is a string of tangle commands that are all

executed in sequence without any possibility for user intervention. The second mode is an

interactive mode. In this mode, the computer screen displays the bottom few tangles on the
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Figure 5.6: Tangle calculator primitives.

stack as well as a “keypad” with tangle calculator commands that the user can choose by

clicking the mouse.

5.2.1 Basic operators

Primitives

The tangle calculator behaves much like a Reverse Polish Notation (RPN) calculator, except

that the operands are four input tangles. Like any calculator, there are operators for creating

primitive objects. For the tangle calculator, these are the fundamental and integral tangles

shown in Figure 5.6. The tangle calculator commands corresponding to each of the primitives

shown in Figure 5.6 will be denoted by 0, 1, . . . 9 except for the ∞-tangle which will be

denoted by i. The effect of each of these commands is to push the tangle stack upwards and

insert the appropriate tangle as the bottom element A of the stack.

Binary operators

Only two binary operators are defined in the tangle calculator. These correspond to the

direct sum and product operators shown in Figure 5.7 (seen before as Figure 3.9). Each of

these binary commands has the effect of replacing the bottom two elements of the tangle

stack A and B with the result of the operation that becomes the new bottom element A of

the stack.
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B A

+ operator (direct sum)

B A

* operator (product)

Figure 5.7: Tangle calculator binary operators.

Unary operators

The tangle calculator’s unary operators modify the bottom element of the stack A, leaving

the rest of the stack unaffected. Most of these operators are simple: x, y, and z reflect

A in one of the three coordinate axes, and the @ command rotates A by a quarter turn

about its centre. Only slightly more involved are the commands + and -, which perform

respectively the twist operations shown in Figure 3.9, and the r operator which reflects A

original tangle x y z r @ + -

Figure 5.8: Tangle calculator unary operators.

about a diagonal. These operators are shown schematically in Figure 5.8.

Stack operators

Finally, the tangle calculator provides the usual set of stack-based operators. These are the

operators for “rolling” the stack up (<) or down (>), duplicating (!) or deleting (~) the

bottom element of the stack, and exchanging (e) the bottom two elements of the stack.

5.2.2 Tangle templates

The previous section described the basic commands used in creating tangles. After a sequence

of these commands has been executed, the tangle calculator will generally have one or more

tangles on the tangle stack that may be used to create knots. For this we must embed the

tangles into one of the basic polyhedra described in Section 3.2. Of the nine basic polyhedra

described by Conway [Con70], only the 1? polyhedron and a variation of the 6?? polyhedron
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are built into KnotPlot. The 1? polyhedron is straight-forward; Figure 5.9 shows how a 3-

Trefoil Borromean rings

Figure 5.9: Some tangle calculator creations.

tangle is embedded into the 1? polyhedron to form a trefoil knot. The variation of Conway’s

6?? polyhedron reveals the symmetry of that polyhedron by positioning the place-holders

into which the tangles are inserted onto the faces of a regular cube in 3D rather than the flat

2D representation given by Conway. Figure 5.9 shows that the Borromean rings result if a

1-tangle is inserted into each of the tangle “slots”. Although this variation is topologically

equivalent to Conway’s 6?? polyhedron, it does not readily produce the same knot diagrams.

Given that the variation on the 6?? polyhedron is (geometrically) different from the

original one given by Conway, it is correct to state that KnotPlot cannot automatically create

any knot from the Conway notation that uses a polyhedron other than the 1? polyhedron

(i.e. if one expects to arrive at a minimal crossing diagram for the knot). This is not

a limitation since the remaining polyhedra, and many more besides, may be interactively

sketched, refined, and manipulated in 3D by the user. The user does this by creating a

tangle template. A tangle template has the same function as one of the basic polyhedra,

however, the term has a specific technical meaning determined by the manner in which such

templates are implemented in KnotPlot (also the term is more intuitive than the term basic

polyhedra). Tangle templates are special kinds of knots represented in the usual manner in

KnotPlot, augmented with one or more tangle holders. Tangle holders are four beads in the

knot that are geometrically close to each other and each located at the endpoint of an open

knot. An example of a tangle template is shown in Figure 5.10. KnotPlot has commands

for creating a tangle template from a knot. The details of this are described in the KnotPlot

manual [Sch97b].
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Figure 5.10: Example of a tangle template.
Figure 5.11: 15 crossing mutant of a 13 cross-
ing knot created with the tangle calculator.

5.2.3 Example: creating a “mutant”

To close this section on the tangle calculator, we will illustrate the creation of a non-trivial

knot, namely the 15-crossing “mutant” of a 13-crossing knot shown in Figure 5.11 (from

[Thi85]). Figure 5.12 shows the steps taken in creating the mutant (some of the operations

have been coalesced) together with the state of the tangle stack. The final step embeds the

tangle into the 1? polyhedron. After a small amount of refinement we arrive at the smoother

embedding shown in Figure 5.11.

5.3 Sketching

Even though the previous methods allow for the creation of many knots, it is often desirable

to create knots with arbitrary embeddings. For this purpose, sketching is essentially the only

alternative. KnotPlot employs a simple sketching technique. Depending on the patience of

the one doing the sketching, this technique may not result in “acceptable” results. Generally

such sketches are refined using the methods described in Chapter 7. Often only a small

amount of refinement can greatly improve the embedding.

Sketching a knot with KnotPlot involves merely clicking down with the mouse at the

desired bead locations. The sketching is done in a plane, with the exception that over- and

under-crossings may be indicated (by using different mouse buttons). For this reason, this

form of sketching is often described as “21
2D” rather than 3D. Actual 3D sketching is rarely

needed. In any event, the 3D placement of the knot may be altered with the topological
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Figure 5.12: Creating the mutant with the tangle calculator.
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refinement methods of Chapter 7.

One useful technique is to sketch with an image of a knot displayed as a backdrop.

The image would usually be derived from a scanned photograph, or a hand drawing of a knot.

Figure 5.13: Sketching a knot with a backdrop image.

It could also be a crude picture of a knot made with a paint program. Figure 5.13 shows a

(simulated) view that a user would see while sketching a knot with a backdrop (backdrop

shows knot #2445 digitally scanned from [Ash44]).

5.4 Construction and deformation tools

KnotPlot has a wide variety of construction tools. These include methods for translation,

scaling, and rotation as would be expected for any program that can edit objects in 3D.

Specific to knots are additional methods for cutting and splicing, transforming individual

components, and the direct manipulation of the knot’s embedding using the mouse. Essen-

tially all of these methods are trivial and will not be discussed here. Again, the reader is

advised to refer to the KnotPlot manual [Sch97b] for more complete information.

The remainder of this section will discuss in detail two of the mathematically more
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interesting construction techniques, symmetry operations and warping.

5.4.1 Symmetry operations

Figure 5.2 shows several decorative knots constructed using a symmetry operation. Both of

these knots can be assembled from smaller pieces which are then assembled under one of the

point groups.

5.4.2 Warping

KnotPlot’s warping mechanism is similar to what is called “free-form deformation” in the

computer graphics literature [Bar94, Coq90]. In typical applications of free-form deforma-

tion, the issues are somewhat different than we are concerned with, as the objects deformed

are generally surfaces or lattices of points in R3. An example of a topic that is of concern in

the deformation of lattices is volume conservation, which is irrelevant to topological drawing.

For our purposes, warping will simply mean applying a mapping (not necessarily a homeo-

morphism) from R3 into R3. It is usually the intent that these mappings change the knot

type.

Rectangle warping

The simplest form of warping maps the rectangle of height h and width w centered at the

origin into an annulus as shown in Figure 5.14. This transformation affects only the x and

y coordinate values, the z value is unchanged. As a mapping (x, y, z) 7→ (x′, y′, z′), the warp

before

⇒
warp rectangle

to annulus

after (d > 0) after (d = 0) after (d < 0)

Figure 5.14: Rectangle warping.
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can be written as

x′ = r cos θ, y′ = r sin θ, z′ = z, where r = x +
h + d

π
, θ =

2π

h + d
(y − h + d

π
).

The parameter d controls the amount of overlap after the warp; there is no overlap if d > 0.

If d = 0, then the top and bottom edges of the rectangle exactly coincide after the warp. A

typical application with d > 0 is to create a circular closed braid as shown in Figure 5.15.

The remaining case d < 0 will cause the rectangle to self-intersect after being warped. An

braid (σ1σ
−1
2 σ3)3

⇒
warp rectangle

to annulus

⇒
join ends

closed braid

Figure 5.15: Creating a closed braid with rectangle warping.

application is shown in Figure 5.19 where a value of d < 0 is used to create a twist knot.

Lorenz warping

Similar to rectangle warping is Lorenz warping. This specialized form of warping is only

useful for creating Lorenz knots (Section 3.5.3). Two forms of the Lorenz warp map a

square centered at the origin into the x and y-branches of the Lorenz template as shown

in Figure 5.16. The objects being warped are collections of lines as shown on the left of

Figure 5.16, created with the line primitive previously mentioned. Each line corresponds to

x-branch before warp

y-branch before warp
after warping after join

Figure 5.16: Lorenz warping to create knot with word xy(xy3)2.
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one symbol in the Lorenz word denoting the knot. A simple algorithm described in [Hol88]

is used to generate the correct placement of these lines. This example is a good illustration

of the utility of simple primitives in generating more complex objects. Figure 5.20 at the

end of this chapter shows a rather complicated Lorenz link of five components created with

this method (one component is the same as the knot in Figure 5.16).

Warping along a link

This form of warping along a link is much more powerful than the previous forms discussed;

it includes both as special cases. It does, however, require more setup than the other methods

and so is used only when the other methods are not sufficient. The idea here is to use a two

component link as an auxiliary construction device. The most useful for this purpose are

the “doubled knots” shown in Figure 5.17. Each of these links has one component (drawn in

trefoil (w = 3) knot 63 (w = 0) knot 942 (w = 1) knot 10134 (w = 4)

Figure 5.17: Doubled knots in a blackboard framing.

black) together with a second component of the same knot type (drawn in a lighter colour)

that lies close to the first component. If we imagine filling the space between these two

components, we arrive at an embedded ribbon in space of the same knot type as one of

the components. The boundary of this ribbon is the two components themselves. If this

ribbon can be “pressed flat” onto a plane (except for the necessary crossings), then it is

said to be in a blackboard framing [Kau91]. More formally, if the two components have the

same orientation, then the blackboard framing is obtained when the linking number of the

components is equal to the writhe of a single component.

We may then use the ribbon constructed from one of these doubled knots as a defor-

mation path. To warp along the link, we map a circular annulus in the xy-plane onto the

ribbon itself. The original z-component is used to specify an offset from the ribbon in the

91



trefoil 76

Figure 5.18: Examples of cabled knots with cabling (4, 44).

direction of the local normal of the surface. If we start with a torus knot and warp along a

blackboard framed knot, then we can create all of the cabled knots, examples of which are

shown in Figure 5.18. In these examples, the four component torus link K4,44 is the initial

object created.

Cabling is an example of a general procedure in knot theory of creating satellite knots,

introduced by Schubert [Sch53]. In the cabled trefoil of Figure 5.18, the torus link K4,44 is

called the satellite of the trefoil knot, which is its companion. Chapter 8 will show another

satellite construction using several features of KnotPlot.

With this form of warping, it is not necessary to start with a link of the form shown

in Figure 5.17. Arbitrary two-component links may be used to define the warp path. In this

case, the results may be unpredictable. The Lorenz warp operation could be implemented

as a combination of rectangle warping (to warp the initial squares onto an annulus) followed

by a warping along a link whose components lie along the boundary of the Lorenz template.
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⇒
relax

⇓
warp

⇐
split

⇓
relax

⇒
fatten

Figure 5.19: Creation of the twist knot 92 using the tangle calculator and warping operation.
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Figure 5.20: Link of Lorenz knots with words x(yx)2, x(yx)3, xy(xy3)2, x3yxy3xy and x(yx)5.
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Chapter 6

Dowker-Thistlethwaite codes

This chapter focuses on one method of providing an initial embedding of a knot. Such an em-

bedding may be refined using techniques described in Chapter 7. Here we are only concerned

with constructing the embedding from what is purely a topological description of the knot.

To this end, we will use graphs as an auxiliary device for working with knots. Since knot

diagrams in the plane are essentially 4-valent planar graphs with labelled vertices indicating

the crossing type, it is interesting to consider what might be gained by viewing knots as

graphs in two dimensions, rather than as three dimensional objects. Two applications of this

approach are described below.

The first application is a useful method for obtaining knot diagrams from the tabula-

tion of proper knots with 13 or fewer crossings by Thistlethwaite [Thi85], recently extended

to 16 crossings by Hoste, Thistlethwaite, and Weeks [HTW98]. These knots are known only

by an encoding that fully describes the knot as a topological object, but that doesn’t directly

indicate anything about its geometric placement. Knot diagrams have not been drawn for

the vast majority of the knots with more than 10 crossings. As can be seen by referring to

Table 6.1, the number of prime knots with a given number of crossings grows rapidly with the

crossing number, so there are many knots that have never had the privilege of being drawn.

Crossing number 3 4 5 6 7 8 9 10 11 12 13
Number of knots 1 1 2 3 7 21 49 165 552 2176 9988

Table 6.1: Number of prime knots up to 13 crossings.
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In fact the growth is known to be exponential [ES87], as might be expected by considering

that there are 2n ways to label a given 4-valent graph with 2 types of labels (left or right

handed crossing).

The second application moves from 2D into 3D in an attempt to improve the subjective

quality of the embeddings. This method may be used as an alternative to the technique of

Chapter 7, which involves relaxing knots in their usual form of a polygon embedded in three

dimensions.

6.1 Knot diagrams from Dowker-Thistlethwaite codes

A Gauss code for a knot diagram in the plane is a string of letters that encode the crossings.

For an n crossing knot the Gauss code has 2n letters, each letter occurring twice. To generate

the code, first label all the crossing points in the plane, for example with the letters A, B,

C, . . . as shown in Figure 6.1 for three different knots. Next pick an orientation and a starting

A B

C

ABCABC

A

D

B

C

ABCDBADC

A

B
C

D

EF

G

H

ABCDEFGCDEHABGFH

Figure 6.1: Several knots along with their Gauss codes.

point on the knot diagram and proceed around the knot while recording the label of each

crossing as it is encountered. After returning to the starting point, a sequence of 2n labels,

each one occurring twice, will be accumulated. This sequence completely encodes the knot

diagram (up to mirror images). The example for the trefoil gives the sequence ABCABC.

During this procedure, no record is kept of whether the crossings are over or under-crossings.

This limits the Gauss code as it stands to knot diagrams that are alternating ; i.e. that

alternate under, over, under. . . as one proceeds along the knot. However, upon reaching

the 8-crossing knots, we start to encounter knots that are non-alternating in a minimal
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projection, so it is necessary to augment the Gauss code somewhat.

A simple variation of the Gauss code that can accommodate the non-alternating case

was developed by Hugh Dowker and has proved invaluable in Dowker and Thistlethwaite’s

enumeration of knots with up to 13 crossings [DT83, Thi85]. The Dowker-Thistlethwaite

code (or DT code) for a knot projection is obtained in a similar way to the Gauss code.

Again pick a starting point on the diagram and proceed in one direction around the knot,

this time labelling each crossing in order with the labels 1, 2, 3, . . . 2n for an n-crossing knot.

Each crossing will now receive two distinct labels. It is not hard to see that one label will

be even and one odd. This procedure defines a parity reversing mapping p(i) on the integers

1, 2, 3, . . . 2n into themselves such that crossings i and p(i) project to the same point on

the plane and p(p(i)) = i. Because each crossing receives one odd and one even label, the

mapping p(i) is completely specified by the sequence p(1), p(3), . . . p(2n− 1). If we augment

each term of this sequence with a + or − sign depending on whether or not crossing p(i) is

an over or under crossing we obtain the DT-code of the knot. Several examples are shown

1 2

3

4 5

6

[4 6 2]

1

2

3

4

5
6

7

8

[6 8 2 4]

1

2
3

4

56

7

8

9

1011

12

13

14

15

16

[12 8 10 −14 4 16 2 −6]

Figure 6.2: Several knots along with their Dowker-Thistlethwaite codes.

in Figure 6.2. Obviously, the code may depend upon the starting point and the direction

traversed (indicted by a dot and arrow in the figure). For example, reversing the orientation

on the trefoil in Figure 6.2 gives the code [−4 −6 −2], which in this case merely flips all

the signs. The code doesn’t depend on the starting point for this example because of the

symmetry in the trefoil’s diagram. However, in the case of the “true-love” knot on the right

in Figure 6.2, all 16 possible choices for starting point and orientation give different codes.

In addition this knot has more than one minimal crossing diagram (recall Figure 3.19, which
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shows two other minimal diagrams for this same knot), each of these yielding several more

distinct codes. Although most knots (knot diagrams) have many DT-codes, one of these will

be minimal in a lexicographical sense and that one may be chosen as the standard “name”

for the knot (diagram). The enumeration in [DT83] follows this convention, however, none

of the methods described in what follows are affected by which code is used.

Granny knot Square knot in alternating projection

Figure 6.3: Different composite knots with the same DT-code of [10 6 8 4 12 2].

It is not immediately apparent that a DT-code uniquely specifies a given knot. We

will see later the reason for this, at least for prime knots. As noted by Adams [Ada94], the

DT-code does not uniquely specify composite knots, as shown in Figure 6.3. For more on

this issue, as well as the problem of knowing when a given code actually specifies a knot, the

reader is referred to the paper by Dowker and Thistlethwaite [DT83], where an algorithm is

given to filter out invalid cases. If we assume that we are given a valid DT-code of a prime

knot, the problem of generating a knot diagram from the code is readily accomplished by

Figure 6.4: The 4-valent graphs obtained from knot
diagrams.

Figure 6.5: Method of ver-
tex replacement to obtain quad
graphs.

considering the 4-valent graph related to the knot diagram.

Several of these graphs are shown in Figure 6.4, for the same knots previously shown

in Figure 6.2. The vertices of the graph project to the crossings, and the edges of the graph

are just the arcs between each pair of crossings. Such a graph is called the knot universe
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or shadow by Kauffman [Kau91] and should not be confused with another graph related to

knot diagrams that is usually called the knot-graph. Given a DT-code p(1), p(3), . . . p(2n −
1) for an n-crossing knot it is a simple matter to construct the adjacency matrix of its

corresponding graph. The first step is to “fill in the blanks” to form the complete DT-code

p(1), p(2), p(3), . . . p(2n) using the relation p(p(i)) = i. Since a vertex i in the knot-graph has

the two labels i and p(i), it is adjacent to the four vertices i− 1, p(i)− 1, i + 1, p(i) + 1 (all

numbers being taken modulo 2n + 1). This is sufficient to construct the adjacency matrix

completely. Also, since this graph corresponds to a knot diagram it is necessarily a planar

graph. Therefore obtaining a knot diagram is equivalent to finding an embedding for this

graph in the plane.

One further step in the procedure must be done in order to ensure the correct cyclic

ordering of edges around each vertex. This requirement can be forced by replacing each

vertex in the original graph with a quad of vertices as shown in Figure 6.5 to obtain a

new graph called the quad graph of the knot (diagram).1 As long as the quad graph is

derived from a DT-code of a prime knot in minimal projection, it will be 3-connected (that

is, any two vertices may be removed without disconnecting the graph). Here we now see

the reason for the DT-code specifying a unique knot diagram. It is related to the fact

that 3-connected planar graphs have a unique embedding, up to homeomorphisms of the

(extended) plane [Whi33]. We now establish that the quad graphs are indeed 3-connected in

the following theorem.

Theorem 1 Let g be the DT-code of a prime knot K in minimal projection and let G be

the quad-graph obtained from g by the procedure described above. Then G is a 3-connected

graph.

Proof

G will be shown to be 3-connected by demonstrating that if any two vertices are removed the

graph remains connected. Edges inside quads will be called quad edges and edges connecting

different quads will be called principal edges.

Case 1: The two vertices are adjacent and lie in different quads.

This is the easiest case. Removing the two vertices removes a single principal edge from the
1This can be done because we know that the cyclic ordering of the vertices adjacent to vertex i (also known

as p(i)) is: i − 1, p(i) − 1, i + 1, p(i) + 1 (up to reversal).
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graph and is equivalent to “cutting” the string of the corresponding knot diagram. Because

the graph is derived from a knot diagram, it must remain connected if these vertices are

removed.

Case 2: The two vertices lie in different quads but are not adjacent.

Removal of the two vertices will result in the elimination of two principal edges in the graph.

Suppose this separates the graph. Then G must be of the form shown below

  A B

where the dashed edges indicate those removed from G. Either:

(a) both A and B correspond to non-trivial knots. This implies that G was derived from

a composite knot, contradicting the hypothesis of the theorem that G is prime.

(b) one of A or B corresponds to the unknot. This implies that G was not obtained from

a minimal projection of a knot, again contradicting the hypothesis of the theorem.

Case 3: The two vertices lie in the same quad.

If any two such vertices are removed, then G should remain connected. Something stronger

will be shown: that an entire quad may be removed without disconnecting G. Suppose the

removal of a given quad separates G into two components A and B. This will delete four

principal edges from the graph G. Since G is constructed from a knot diagram it is necessary

that two of these edges go to each component A and B. Therefore G must be of the form

  
A

B

in which case it is evident that K could not have been a minimal projection (because the

portion of the knot diagram corresponding to B could be “flipped around” in the plane,

eliminating one crossing), violating the hypothesis of the theorem. r
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(a) ⇓ (b) ⇓ (c) ⇓

(d) ⇓ (e) ⇓ (f) ⇓

(g) (h) (i)

Figure 6.6: Graphs resulting from the embedding process (a–c), after rearrangement (d–
f) and their corresponding knot diagrams (g–i). (g) is a diagram of the trefoil, (h) is the
figure eight knot, and (i) is the knot 820.
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Planar 3-connected graphs enjoy a particularly simple embedding algorithm due to

Tutte ([Tut63], see also [Rea79]). This algorithm is easy to describe:

1. Find a face in the graph, say with k vertices.

2. Embed these vertices on a regular k-gon.

3. Embed all other vertices such that each vertex lies at the centroid of its neighbours.

This step involves solving a (possibly large) system of linear equations.

It is useful to augment the quad graphs slightly before embedding for the purpose of easily

reading off the knot diagram given a diagram of the graph. This is done by subdividing each

quad into two triangular faces by adding an extra edge between the pair of opposite vertices

that correspond to an overcrossing in the knot diagram. Since adding an extra edge in a

graph can only increase its connectedness the embedding algorithm is still valid for these new

graphs. One of the triangular faces in the augmented quad graph is chosen and embedded on

an equilateral triangle as the first two steps of Tutte’s algorithm. For the final step a simple

Gauss-Jordan elimination technique [PFTV88] was used. Even though this last phase has

an execution time of O(n3) it has proven sufficient for the problem sizes tried so far. The

result of this embedding is shown for several cases in Figure 6.6 (a–c). To obtain the knot

diagram, we first adjust the graphs slightly by adding two extra vertices to get the graphs

shown in Figure 6.6 (d–f)2 from which it is easy to construct the knot diagrams shown in

Figure 6.6 (g–i).

It can be seen from the examples shown that the embedding technique does not yield

“pleasing” graphs or knot diagrams. In many cases there are too many vertices clustered in

one small region. Another deficiency is that crossings in the knot diagrams often cross at

small angles, rather than at approximate right angles as seen in most of the knot diagrams in

this thesis (taken as being examples of “good” diagrams). One possible fix, although tedious,

is to include one extra step in the procedure. An example of this is shown in Figure 6.7 where

the quad graph is relaxed prior to constructing the knot diagram. This relaxation is done

with KnotPlot running in graph-mode. This mode is an (almost) obsolete mode where graphs

are represented as adjacency lists. The dynamics is essentially the same as for regular knots
2Note that these new graphs are no longer 3-connected.

102



(a) (b) (c)

Figure 6.7: Quad graphs and knot diagrams for 131022. (a) is the “raw” graph obtained from
the embedding technique. (b) is after the graph has been relaxed with KnotPlot (with some
minor adjustments by hand). (c) is the knot diagram obtained from (b).

(to be described in Chapter 7), except that no collision checking is performed.3 Because of

this, some minor adjustments to eliminate intersecting edges had to be done to arrive at the

graph shown in Figure 6.7b. The need to perform adjustments by hand is undesirable and

needs to be addressed in future versions of KnotPlot.

The fundamental weakness in this embedding approach is Tutte’s algorithm, which

simply does not provide adaquate embeddings. It is also prone to numerical instabilities

when solving the system of linear equations. Of course there exist better graph embedding

algorithms [CON85, Lyo92, FHH+93, DH96], however, none of these methods are specifi-

cally concerned with producing good knot diagrams. We would like to see, in addition to

roughly perpendicular crossings, smooth elegant curves between crossings. Considerations of

aesthetic criteria such as these and their relationship to graph embedding is an avenue for

further research.

6.2 Relaxing the quad graphs in 3D

A different method for relaxation of quad graphs is to relax the graphs in 3D rather than

embedding them directly in 2D. The quad graph is initially embedded in 3D in a random

configuration. The relaxation of the graph must be done without any collision avoidance.

Since the topology of the knot is completely encoded by the graph, this is a valid step; all

that is desired is a suitable embedding of the graph in R3. It has been observed that such
3KnotPlot does perform the usual collision checking for the newer implementation of graphs, where graphs

are represented as special kinds of knots.
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initial random configuration after relaxation projected to sphere

Figure 6.8: Quad-graph for 131022 relaxed in 3D.

graphs naturally relax into configurations that, while not planar, are trivially mapped onto

an enclosed sphere (see Figure 6.8). Since the sphere is homeomorphic to the extended plane,

it is easy to obtain an embedding in the plane by stereographic projection.

Examples using the 3D method are shown in Figure 6.9. From our experiments, this

Figure 6.9: Knots 131022, 132269, and 134567 relaxed using the 3D technique.

method produces better knot diagrams than would be possible using the method based on

Tutte’s algorithm. The 3D method is not subject to any of the numerical instabilities of

the matrix inversion phase. Another advantage is that the 3D method applies to any quad

graph derived from a knot, including composite knots or knots in a non-minimal projection.

Figure 6.10 shows an example of the knot diagram obtained from the DT-code of a large

composite knot (with 25 crossings).4

There are also several disadvantages to the 3D method. Although in most cases of

interest the quad graphs relax nicely to a configuration that can be projected to a sphere

without self-intersections, we have not proven that this will always occur. Experimental
4The reader is reminded that the Dowker code does not necessarily specify an unique composite knot.
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Figure 6.10: Composite knot with DT-code [6 −14 10 20 2 24 18 −4 22 8 12 16 30 36 42 38
46 28 44 48 50 26 32 34 40] relaxed with the 3D method.

Figure 6.11: 36-crossing knot with DT-code [40 24 10 30 22 52 32 64 46 12 6 42 60 2 8 50 66
16 62 58 28 4 54 34 14 20 68 36 72 26 70 56 48 18 44 38] created with 3D quad method.

evidence indicates that for large knot diagrams (more than 50 crossings), the quad graph

will generally get trapped in a local minimum during relaxation in which no projection to

an enclosed sphere is possible without self-intersections. Another disadvantage is that the

method is somewhat computationally expensive in comparison to the Tutte algorithm. In

the cases we have studied, however, this is a small price to pay for obtaining a good knot

diagram. Certainly within the range of currently enumerated knots (up to 16 crossings), the

technique is perfectly acceptable; Figure 6.11 shows a 36-crossing diagram obtained using

the method.
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6.2.1 Alternative relaxation scheme

It is tempting to consider knot relaxation entirely by using quad graphs. This would eliminate

the need for the computationally expensive collision prevention step needed for the relaxation

of knots, the knot type instead being enforced by the topology of the quad graphs. In

addition, although the relaxation of the quad graphs uses essentially the same force laws as do

the knots, typically fewer vertices are needed to represent a given knot with a quad graph than

are needed for the polygonal representation discussed in Chapter 7. Since each relaxation

step has a time complexity quadratic in the number of vertices, this can be a considerable

speed advantage. The fact that the quad graphs may not relax to a valid conformation is of

no great concern as the final state may be easily checked for self-intersections when projected

onto a sphere.

However, it will become clear that the method is no replacement for the techniques

to be presented in Chapter 7, simply because the method can never change the number of

crossings in the knot; i.e. there is no representation for the Reidemeister moves using the

quad graphs. Only in the case where one wants to find a good embedding for a given DT-

code (especially if that code is known to be from a minimal crossing diagram) is the quad

graph method really appropriate. It is an interesting problem for further research whether

the method could be enhanced by allowing combinatorial moves on the quad graphs that

implement the Reidemeister moves.

6.2.2 Other applications of the 3D relaxation

This chapter concludes with a less formal example intended to make real knot-tyers5 happy.

There is a class of knots known as “Turk’s head knots”. From an inspection of the Ashley

Book of Knots [Ash44, chapter 17] it is by no means clear what a rigourous definition of one

of these might be. One subset of the class seems to be alternating versions of torus knots

in their standard form (obtained by a projection of Equation 5.1 to the xy-plane). In other

words, the Turk’s head knot and the corresponding torus knot have the same “shadow” on

the xy-plane, except the torus knot is generally non-alternating. Ashley actually gives an

algorithm for the construction (on paper) of such knot diagrams [Ash44, page 243]. Using
5This is the officially recognized spelling according to the International Guild of Knot Tyers.

106



Figure 6.12: “Turk’s head” knot generated from a (4, 7)-torus knot.

KnotPlot, it is easy to do the same. One first computes the DT-code of a chosen torus knot,

then eliminates the minus signs, leaving the DT-code for the corresponding Turk’s head knot.

The procedure results in the fine drawing of a Turk’s head knot shown in Figure 6.12.6 This

knot has been relaxed slightly according the methods of Chapter 7 to improve the embedding.

Another possibility using the quad graph approach is to dispense entirely with the two

last steps in the procedure, that of projecting to a sphere and the stereographic projection

to the plane. This results in the relaxed quad graph shown in Figure 6.13. From this,

an embedding for the knot could be constructed directly in 3D (this technique is not yet

implemented). For one acquainted with the application of Turk’s head knots, wrapping

about a cylindrical object, the form of the embedding that would result should be familiar.

6This particular knot is also the closure of the braid (σ1σ
−1
2 σ3)

7.
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Figure 6.13: Relaxed quad graph for the (4, 7) Turk’s head knot.
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Chapter 7

Topological refinement

A key point in topological drawing is that users should be able to construct an initial config-

uration for an object while neglecting most issues of geometric placement. This frees them

to concentrate on the important topological features of whatever they are constructing. Be-

cause these initial constructions may be crude in an aesthetic sense, it is often necessary to

refine the configuration. Of course, during this phase the relevant topological features must

be preserved. This chapter discusses methods of topological refinement.

One approach to topological refinement is to have most of the work done automati-

cally. For this, KnotPlot uses a simulated physical model. Objects move according to forces

applied, subject to topological constraints. A second method for refinement is to allow users

to interactively modify the embedding, either by applying new forces to influence objects to

follow a desired path, or by performing more drastic editing operations, such as cutting or

splicing.

7.1 KnotPlot’s dynamical model

KnotPlot uses a simple dynamical model that emulates a pseudo-physical situation. The

dynamical entities in the simulation are the “beads” or vertices in the knot shown in Fig-

ure 7.1 and previously discussed in Section 4.2. It is to these beads that all forces are applied.

During the simulation, each bead simply moves in the direction it is compelled to by the

forces that are applied to it. The “sticks” or edges in the knot are not directly involved in

the dynamics, although they provide constraints on the movement of the beads.
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Figure 7.1: A link with Conway number 8 showing the internal “bead and stick” represen-
tation.

We have referred to the dynamical simulation as “pseudo-physical” because several

modifications to “standard physics” are made to allow more efficient and reliable perfor-

mance. The first and most important of these is that each bead is moved individually and

is constrained to moving a maximum distance dmax during each time step. This permits a

simple collision avoidance algorithm to be implemented that ensures preservation of knot-

type during the simulation. Secondly, an alternate equation of motion where the applied

force is proportional to the velocity (F ∝ v) is generally used instead of the usual Newtonian

dynamics where the force is proportional to the acceleration (F ∝ a). Thus the beads do

not have any inertia; the effect upon the system as a whole is to lose energy. This results in

a dynamics similar to one that is always critically damped.

To satisfy “purists”, as well as for some applications, KnotPlot can use the strict

Newtonian F ∝ a dynamics together with an optional velocity-dependent damping force. In

normal situations, there is little observable difference between F ∝ a with a damping force

and the simpler F ∝ v. The F ∝ a dynamics without the damping force can be of interest.

In this case, the system conserves energy (approximately, since errors are introduced from

clamping the distance that beads can move). We will see later in this chapter examples of

knots and links that oscillate about a stable point under the pure F ∝ a dynamics (without

damping).

One further justification for the F ∝ v approach is that in most applications of
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topological refinement, the user does not care about the path through configuration space

followed by the knot. Rather, the final conformation is of greater importance. Informally, one

would expect that this final state does not depend on the specific method of integrating the

equations of motion, since in either case it is the same forces that come to static equilibrium

in the end. This ignores the possibility that some conformations may not be reachable using

one of the integration schemes. It implicitly assumes there is a global minimum to the energy

state, and relies on local minima being rare if not non-existent.1

Before we specify the relaxation algorithm, several definitions are in order.

Definition: safe position A (possibly knotted) polygon is in a safe position if no two

non-adjacent edges in the polygon are closer than a threshold distance dclose. This

parameter is usually chosen so that dclose > dmax.

Definition: stuck bead A bead is said to be stuck if it cannot be moved to the location

specified by the equations of motion without causing the knot as a whole to be moved

into a position that is not safe at some point throughout the move.

Definition: stuck knot A knot is a stuck knot when all of its beads are themselves stuck.

With these definitions, we are ready to specify the basic relaxation algorithm that

KnotPlot uses. In the following, the assumption is made that the knot starts out in a safe

configuration. At each time step during the simulation, the following sequence of events

occurs:

1. sum the forces currently active on each bead

2. for each bead in sequence:

(a) determine the new position of the bead if no topological constraints were active

using the total force on that bead and the current physical model for interpretation

of that force (i.e. F ∝ v or F ∝ a)

(b) if the distance moved is greater than dmax, clamp the distance moved at dmax in

the same direction
1At least for prime proper knots. We will see an example later of a link that has a clear local minimum in

the energy landscape.
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(c) check to determine if moving the bead to its desired location will cause the knot

to move into an unsafe position

(d) if the bead can be moved such that the knot is in a safe position, then update

the position of the bead — otherwise declare it “stuck” and do not update the

position

7.1.1 Force laws

Normally, only two forces are used, an attractive “mechanical” force applied between adjacent

beads on the same component and a repulsive “electrical” force applied between all other

pairs of beads.

The mechanical force is a generalization of Hooke’s law, allowing for an arbitrary

power of the distance r between beads,

Fm = Hr1+β (7.1)

where H is a constant and β = 0 for the standard case of the ideal (linear) spring. The

mechanical force is applied only to adjacent beads on the same link component. The electric

force also allows for a general power of the distance,

Fe = Kr−(2+α) (7.2)

where r again is the distance between the two beads. For α = 0, the repulsive force falls

off as 1/r2, just as in the Coulomb case. The electric force is applied to all pairs of beads

excluding those pairs consisting of adjacent beads on the same component. In the simulation,

the constants H, K, α, and β may be varied. In most of the examples shown in this chapter,

α = 4 and β = 1.

For both of these forces, Newton’s Third Law2 is obeyed. The dynamics is similar

to that of electro-statically charged masses connected by springs, with the exception that α

is usually chosen to be greater than zero (typical values for α range from 4–6). The reason

for this has to do with a peculiarity of the 1/r2 repulsive force. It will be recalled from

classical electrodynamics that two infinitely long charged wires experience no increase in

potential if the distance between them is decreased [Jac75]. Although the situation here is
2Every reaction (force) has an equal and opposite reaction.
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quite different, this result from electrodynamics is suggestive that a 1/r2 repulsive force will

not tend to discourage self-intersections. A higher exponent has proven to be a useful first

step at collision avoidance, however, it alone is not sufficient for the task.

7.1.2 Collision Avoidance

For this technique to have any relevance to knot theory, it is imperative that the knot should

avoid passing through itself during the relaxation. The problem of collision avoidance is one

well known from the field of computer animation, where it is desirable not to have objects

pass through one another. Most techniques [MW88] involve fairly expensive calculations to

take into account reasonably complex objects such as convex polyhedra. In that work, an

attempt is also made to respond to the collision in a physically realistic manner.

In the model considered here, the analysis is simplified by the fact that the knot is

represented by a polygonal path in 3D. Therefore the problem of self-intersection reduces

to the comparatively trivial problem of finding the distance between two line segments in

3D. In the relaxation algorithm previously specified, the self-intersection problem is solved by

requiring that the position of each bead be updated one at a time (no simultaneous updates),

and that no bead be moved if the move will result in the knot entering an unsafe position

(i.e. KnotPlot maintains safeness during relaxation). These conditions, together with the

constraint that dmax < dclose, are sufficient to prove the following theorem.

Theorem 2 KnotPlot maintains knot type during relaxation.

The proof consists of two observations.

Observation 1: KnotPlot maintains safeness during relaxation. Bead (vertex) positions

are updated one at a time.

A

B

CD

Suppose a bead is about to be moved from position B 7→ D. This move is allowed only if the

resulting polygon is in a safe position.

Observation 2: If a vertex in the polygon is moved to a new (safe) position by a distance
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d where d < dmax < dclose, then the knot type remains unchanged.

Proof

Suppose to the contrary that moving a vertex from B to D changes the knot type.

A
C

D

E
B

Consider the triangles ABD and BCD (generally non-co-planar). If the knot type is changed

by this move, some edge of the knotted polygon must intersect one of these triangles (since

otherwise there would be an isotopy between the two positions). Say for argument that this

edge intersects the triangle BCD at a point E.

B G H
C

EF

D

Triangles HCE and GCF are similar, so since FC ≥ EC it is true that FG ≥ EH. By

Pythagoras, BF ≥ FG. Combining this with the fact that BD ≥ BF implies that BD ≥ EH.

Now BD corresponds to the distance that the bead has moved. This distance is subjected

to the restriction dmax ≥ BD. Because of observation 1 the segment BC and the segment

containing the point E must have been no closer than dclose before the move. This means

that EH ≥ dclose. Combining everything, we have that dmax ≥ dclose. This contradicts the

condition imposed during relaxation, that dmax < dclose. Therefore the assumption that the

knot type is changed is false. r

7.2 Relaxing knots

7.2.1 Results

Now that Theorem 2 has been established, we can proceed to use KnotPlot for relaxing

knots with confidence. Figures 7.2 and 7.3 show the relaxation for two simple cases, the
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T = 0 T = 10 T = 28

T = 60 T = 118 T = 223

Figure 7.2: Relaxation of a simple unknot

initial embeddings being sketched by hand. Although difficult to illustrate outside of a direct

demonstration in front of a computer monitor using KnotPlot, the relaxation algorithm does

work to prevent unwanted intersections that might change the knot type. It is easy to see in

such a demonstration that some beads become temporarily stuck, becoming unstuck as the

balance of forces changes. The visual effect is that the sticks appear to “bounce off” each

other.

One interesting3 observation about make in Figure 7.2 is that the sequence of Reide-

meister moves in going from the initial state to the final state are particularly clear (type

II from T = 0 to T = 10, type I from T = 10 to T = 28, type II from T = 28 to T = 60,

and type I again from T = 60 to T = 118).4 It should be emphasized that this results natu-

rally from the simple dynamics; the dynamics itself has no “knowledge” of the Reidemeister

moves.

The trefoil is a good illustration of topological refinement. The initial construction
3One reviewer pointed out that this is not interesting at all, as Reidemeister’s theorem says one must see

such a sequence in any isotopy. Of course this is true, however, I feel it is worth mentioning here to make it
perfectly clear that the Reidemeister moves are not “hard-coded” into KnotPlot in some way, an impression
that some people still have even after the dynamics have been explained.

4The symbol T represents the number of iteration steps in the relaxation algorithm.
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T = 0 T = 15 T = 50

T = 129 T = 312 T = 1022

Figure 7.3: Relaxation of a simple trefoil

is rather “messy” (drawn quickly by hand), and is not even a minimal projection. As the

relaxation proceeds, the trefoil approaches the canonical form for the trefoil discussed in

Section 3.5. Achievement of this canonical form is more clearly shown in Figure 7.4, also a

trefoil but this time the initial configuration is derived from the Conway notation. Here we

see the canonical form emerges from the initially somewhat arbitrary embedding.

The relaxation examples shown so far are rather trivial; i.e. the knot type in each

case is easily recognizable by inspection. A more interesting test of the technique is starting

with one of the two “difficult” unknots seen previously in Chapters 1 and 3, the “monster”

unknot and the Freedman unknot. Figure 7.5 shows the relaxation of the monster unknot.

The initial configuration at T = 0 has no simplifying Reidemeister moves (type I or II), so

the knot must be made more complicated (in terms of number of crossings) before it can be

simplified. At T = 741, we see that the knot has reached a maximum of 12 crossings, after

which it begins to simplify.

In the case of the Freedman unknot the relaxation also proceeds at first to make the

knot more complicated (Figure 7.6). Our relaxation is qualitatively similar to Kusner and

Sullivan’s relaxation of the same knot [KS94] (they started from a slightly different initial
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T = 0 T = 5 T = 20

T = 65 T = 200 T = 606

Figure 7.4: Relaxation of a trefoil starting from Conway notation 3.

configuration). Indeed, the KnotPlot relaxation is somewhat more “satisfying” in some ways;

not exhibiting the “tight spots” shown in [KS94]. These tight spots in [KS94] are largely due

to the Möbius invariance of the energy model they used, which effectively “doesn’t see” such

features. In addition, the greater “openness” in the KnotPlot case is a result of the steep

falloff (high power) of the repulsive force used.

Finally, this section would not be complete without showing the relaxation of at least

one non-trivial knot. Figure 7.7 shows the relaxation of the torus knot 51 starting from a

tangled initial configuration. It is interesting to note that the final state does not have the

expected symmetry that the same knot (K2,5) shows in Colour Plate 1. Similar results are

shown in [KS94] for this knot; it appears that a local minimum has been found in both cases.

7.2.2 Limitations of the dynamics

Although the relaxation method appears to work well in the examples given so far, there

are several problems and limitations of the dynamics. One drawback is that the operation

of collision checking and the repulsive force are both of O(N2) in the number of beads, N .

Also each collision check is potentially quite expensive. Specifically, determining the distance

between line segments in 3D, although straight-forward, involves a considerable amount of
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T = 0, EMD = 335 T = 17, EMD = 304 T = 220, EMD = 277

T = 741, EMD = 253 T = 1756, EMD = 228 T = 3144, EMD = 203

T = 5514, EMD = 176 T = 13310, EMD = 144 T = 31121, EMD = 116

T = 54518, EMD = 70 T = 80000, EMD = 49 T =∞, EMD = 10

Figure 7.5: Relaxation of the “monster” unknot, shown at approximately equal steps in EMD.
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T = 0, EMD = 1217 T = 23, EMD = 1132 T = 226, EMD = 1048

T = 5460, EMD = 963 T = 6800, EMD = 877 T = 9860, EMD = 794

T = 12880, EMD = 708 T = 13360, EMD = 624 T = 14420, EMD = 539

T = 15360, EMD = 455 T = 21180, EMD = 371 T =∞, EMD = 286

Figure 7.6: Relaxation of the “Freedman” unknot, shown at approximately equal steps in
EMD.
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T = 0, EMD = 381 T = 18, EMD = 368 T = 30, EMD = 354 T = 39, EMD = 342

T = 60, EMD = 329 T = 120, EMD = 315 T = 209, EMD = 302 T = 307, EMD = 289

T = 401, EMD = 276 T = 551, EMD = 262 T = 781, EMD = 249 T = 1081, EMD = 236

T = 1481, EMD = 222 T = 2181, EMD = 208 T = 3381, EMD = 196 T = 21381, EMD = 183

Figure 7.7: Relaxation of the 51 knot, shown at approximately equal steps in EMD.

120



vector algebra. However, it is not necessary to know the distance between each line segment,

but simply whether two line segments are farther apart than some threshold distance. A

useful first step is then to perform a bounding box check. Only if this fails is the more

expensive routine that determines the distance between the line segments called. This gains

a factor of about five in the speed of the relaxations.

The method of relaxation described above works well in a large number of cases. All

the knots contained in KnotPlot’s on-line catalogue were relaxed using the force laws as

presented. Most of these were sketched by hand, although many originated from a Conway

notation description. It was found in examining the logs of the simulations that generally

the force laws alone would have been sufficient to prevent self-intersections. However, the

explicit collision prevention was needed in a few cases (less than 2%). Of course the times

that it is needed more than justify the extra expense in performing the collision checking

step.

T = 0 T = 18 T = 27 T = 33

Figure 7.8: Force laws encouraging collision.

One problem observed with the dynamical simulation is that on occasion a knot will

get stuck in an “awkward” orientation. This is partly due to that fact that the force law

works to encourage collisions in some cases. Figure 7.8 illustrates a typical situation where

this occurs. The two right most beads in the component with the fewer beads have a net

force in the left direction of a slightly larger magnitude than the neighbouring beads in the

other component at T = 0. As the simulation proceeds, the components slowly drift closer to

each other until at T = 33 two beads in each component become stuck. The collision shown

in Figure 7.8 occurs when using a (default) value of α = 4 in Equation 7.2. With α = 6 the

collision does not take place, however, increasing the parameter α is not normally desirable

as this can lead to numerical instability. A better solution is to increase the number of beads

in the knot.

Occasionally the entire knot becomes stuck as seen in Figure 7.9 which shows a stuck
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unknot. Again, problems of this sort can be avoided simply by using a sufficient number of

beads in the knot model. Curiously, this knot becomes unstuck and eventually relaxes to a

Figure 7.9: Stuck unknot for α = 4.

regular polygon if α is reduced to zero. Normally using α = 0 would lead to many collisions.

Since the parameters of the simulation can be modified interactively, it is often useful to

do so to get out of stuck situations. However, this method requires a considerable about of

experience with KnotPlot, and is not guaranteed to always succeed.

7.3 Extensions to the dynamical model

Although the method of relaxation so far presented works well in many cases, it is interesting

to consider extensions to the dynamical model. These extensions may be for the purpose of

studying new phenomena in knot relaxation, or to attempt to deal with the situations where

the relaxation method fails. In the latter case, the previous section suggested one technique

(interactive modification of parameters) that could be used, however, it is desirable to have

available more reliable methods that don’t necessarily rely on user interaction.

The extensions discussed in this section are of three types. First of all, there are

new forces, one of which is interactive. Secondly, there are methods to constrain motion.

Finally, there are techniques that step outside purely physical models for knot dynamics.

These methods change the geometry of the knot by altering the polygonal representation

(while preserving the knot type).

7.3.1 Forces

KnotPlot has more than a dozen force models available for use by experimenters. Sec-

tion 7.1.1 discussed the two most commonly used forces, the mechanical and electrical force.
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Both of these are parameterized families of forces; each has a relative magnitude and an

associated exponent. The mechanical force is a generalized spring that can vary from being

strictly linear (as are most real-world springs) to highly non-linear. The repulsive electrical

force has one extreme where it behaves much like electrical charge (force falls off with the

inverse square of distance), and another extreme (the normal setting) where the force falls

off with a higher power of the distance, thus behaving as an effectively short-range force.

Even with these two forces, the number of possible parameter settings is large. We

have found that useful behaviour results from a relatively narrow range of parameter settings.

The addition of still more force laws, each with its set of parameters might compound the

problem of “floundering in parameter space”, however, we find that by implementing forces

that have simple physical interpretations, we can rely on the intuition of the user to aid in

finding useful combinations and parameter settings.

In order not to overburden this section with an exhaustive discussion of each of the

new forces, we will concentrate on the few that have found useful applications in the research

presented in Chapter 8. Other forces, such as gravity, are more of a curiosity, but may be

useful for users who are seeking to design something out of the ordinary. As with other

details about KnotPlot, the manual [Sch97b] has full information.

Thermal noise

The “thermal noise” force is the simplest of the new forces. It is not really “thermal” in a

strict physical sense, however, qualitatively the effect is similar to thermal agitation. If this

force is enabled, then during each time step every bead in the knot receives an additional

force with direction uniformly distributed on the sphere and magnitude uniformly distributed

between zero and a user-selectable maximum.

The thermal force is quite good at getting out of stuck situations. Figure 7.10 shows

the stuck unknot of Figure 7.9 becoming unstuck after a little bit of relaxation with the

thermal force enabled. Sometimes it is useful to run the knot dynamics using only the

thermal force. Chapter 8 discusses an application of this method in finding stick numbers of

knots.
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T = 0 T = 20 T = 40 T = 60

T = 80 T = 100 T = 120 T = 220

T = 320 T = 420 T = 520 T = 620

Figure 7.10: Stuck unknot becoming unstuck with thermal force. The thermal force was
used for only the first 120 iterations.

Push/pull rockets

All of the forces so far described work automatically, with the exception that the user can

interactively modify whether the force is enabled (by turning it on or off) as well as the

parameters associated with the force. However, with the use of push/pull rockets the user is

able to decide interactively where and when to apply the force. This force works only in an

interactive fashion and is applied to only one bead in the knot. The experimenter chooses

this bead by running the simulation and clicking with a mouse button on a bead in the knot.

Depending on which mouse button is pressed, a force is applied to the chosen bead along

the line of sight either in the direction of the viewpoint, or in the opposite direction. The

magnitude of this force is a user-selectable parameter, it is usually chosen so that the force

overwhelms all other forces acting on the bead. The effect is akin to attaching a “rocket”

to one part of the knot that pushes or pulls along the line of sight. A typical interaction

technique is to apply the rockets intermittently to sections of the knot that appear stuck,

while rotating the knot with a virtual trackball. Normally this would be done with the two

default forces (mechanical and electrical) active, however the push/pull rockets may be used

alone. In the latter case the experimenter can directly manipulate the knot (one bead at a

time) while ensuring that the knot-type remains unchanged.

Push/pull rockets are typically more effective at getting out of stuck situations than
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Figure 7.11: Stuck trefoil that can be simplified using push/pull rockets.

the thermal force. Figure 7.11 shows a badly stuck trefoil: two out of three beads in this knot

become stuck if the dynamics is run using only the two default forces. By using these forces

in conjunction with the rockets (and rotations of the knot), it is easy (after some practice) to

manipulate the knot until it achieves the canonical form for the trefoil. “Topological puzzles”

such as shown in Figure 7.11 are examples of computational steering, where the experimenter

affects the outcome of a computation by directly intervening and steering the computation

to a desired goal, based upon information gathered through visualization.

7.3.2 Constraining motion

Bead masses

In the examples shown so far, the beads in the knots can be considered identical, in particular,

they all have the same mass. Therefore with a given force, each bead will respond in the same

way (ignoring any topological constraints upon the movement). A simple generalization of

the dynamics is to lift this restriction, and allow arbitrary masses for beads. Depending on

which form of dynamics is used, the bead mass m will provide a scale factor on the amount of

movement on each time step (using the F ∝ v interpretation, now F = mv), or the velocity

change on each time step (using F = ma).

So far, we have not found any especially interesting applications of this feature, with

the exception of the next simplest case where beads of two different masses are used: the

default (unit) mass and infinite mass. Beads of infinite mass are fixed in location. This can

be useful for drawing specific knot diagrams as shown in Figure 7.12. The trefoil and the

endpoints of the open component are held fixed using beads of infinite mass, whereas other
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initial construction after relaxation drawn as smooth

Figure 7.12: Relaxation using beads of different masses.

beads in the open component have the default mass and so are free to move in the normal

manner. If the trefoil were not held fixed during relaxation, it would tend to deform due to

the presence of the other component, which in turn would tend to unravel and eventually

become free of the trefoil. In this example, we might be using topological drawing to illustrate

a particular idea (perhaps related to the computation of the knot group, for example) and

it is desirable to have the trefoil retain its canonical form.

Anchors

A second method of constraining movement is through the use of anchors. Anchors are

points in R3 associated with each bead in the knot. Each bead is attached to its anchor

point using a spring with a force law similar in form to Equation 7.1. The effect of anchors is

that, once they are set, beads are not free to drift “too far” from their anchor points. This

initial sketch after relaxation drawn as smooth

Figure 7.13: Relaxation using anchors to improve a sketched knot.

is useful in improving rough sketches, such as shown in Figure 7.13. On the left is shown a

configuration sketched by hand. After this initial rough sketch, the anchor points are set to

be equal to the bead positions and the dynamical simulation is run with the anchors and the
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initial configuration after 1 step after 8 steps after 25 steps

Figure 7.14: Creating a random embedding of a figure-eight knot using anchors.

default mechanical and electrical forces. It can be seen that after the “knot” has come to an

equilibrium position (middle figure), the salient feature of the initial sketch (showing three

loops) is preserved but the embedding has been improved. Without anchors, of course, this

unknot would simplify to a round circle eventually.

Anchors have been used in the manner described above in many cases for the pro-

duction of knots in the knot catalogue, especially for knots that are unique in some way. For

example, the knots shown in Figure 4.1 and the two decorative knots shown in Figure 5.2

were originally sketched by hand (using a scanned image as a backdrop) and then refined

using relaxation with the anchor points set to the initial bead locations.

A quite different application of anchors is in the creation of random embeddings of

specific knot-types. While KnotPlot has several methods of creating random knots (Sec-

tion 5.1.2), given knot-types are created only by chance; one might have to generate many

knots before one with a desired knot-type results. Figure 7.14 shows how an initial embedding

of a figure-eight knot may be randomized through the use of anchors. In each randomization

step, the following sequence of sub-steps is taken:

(a) Save the current configuration of the knot.

(b) Randomly displace each bead in the knot, without regard to preserving knot-type. It

is not important to preserve knot-type since these locations will only be used to set the

anchor locations.

(c) Set the anchor locations to the current bead locations.

127



(d) Restore the configuration of the knot from the position saved in sub-step (a).

(e) Relax the knot with anchors enabled, and possibly other forces as well. In the example

shown in Figure 7.14, no other forces are used.

A typical result after one complete randomization step is shown as the second diagram

in Figure 7.14. The anchor locations set during sub-step (b) of step 1 are shown in a lighter

colour. In this example, the anchor locations are relatively close to the bead locations. Of

course the anchors could be set to arbitrary positions during sub-step (b). Whatever the

locations of the anchor points are, each bead will be attracted towards its anchor point

during sub-step (e), possibly becoming stuck along the way. The net effect of many such

randomization steps is to incrementally distort the knot to a new random configuration,

while preserving the knot-type.

7.3.3 Bead tricks

One of the most useful techniques in knot relaxation or recognition is to “step outside of

physics”. Since our domain is not molecular dynamics but topology, we are free to explicitly

modify the polygonal knot by adding or removing vertices, as long as these procedures

maintain the knot-type. Huang, Kauffman, and Grzeszczuk [GHK97] (independently) arrived

at the same conclusion that this method greatly improves the efficiency of the relaxation

procedure. Our method is almost identical to theirs, except that they always ensure that

the number of vertices in the knot is unchanged as the relaxation proceeds; i.e. the method

is essentially a vertex shift operation. They impose this constraint in order to maintain a

greater physical realism, although strictly speaking even a vertex shift while maintaining the

number of vertices is somewhat non-physical.

KnotPlot doesn’t impose any constraint on keeping the number of vertices in a knot

constant. If this is desired, then the deleting and adding of vertices can be done in a single

step. In the examples we show in this thesis, this has not been done.

Deleting beads

Figure 7.15 illustrates the bead deletion procedure. First a bead is chosen for deletion, this

is often done via a random selection. Then an attempt is made to move the bead to a target
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location that lies along the line segment joining the two neighbouring beads. Usually this

is simply the midpoint of the line segment. The bead is moved incrementally, in steps such

before

⇒
move bead safely

during move

⇒
delete bead

after

Figure 7.15: Bead deletion procedure.

that the distance moved during each step is no greater than dmax. After each step, the knot

position is checked for safeness. If the knot is in an unsafe position after any step, the deletion

procedure is aborted and the chosen bead returned to its original location. If the knot is in

a safe position after the bead reaches its target location, the bead is deleted. Because the

manner in which the bead is moved mimics the movement that might occur using the normal

dynamics, Theorem 2 ensures that the knot-type remains unchanged.

Although this method is computationally equivalent to the method used by Huang,

Kauffman, and Grzeszczuk [GHK97], which checks to see if any part of the knot intersects the

triangle formed by the bead chosen for deletion and its neighbours, our method has several

useful features. First of all, drawing the knot at each step during the bead move produces an

interesting animation of the algorithm. Normally, for efficiency reasons, drawing is turned

off during the procedure. Secondly, the implementation allows for general move operations.

Examples would be moving the bead to the nearest location with integer coordinates or

perhaps moving the bead along a (user) specified path. Placing these move operations

within a unified framework based on the same collision prevention algorithm as the normal

dynamical model is conceptually useful.

Splitting edges

The companion procedure to deleting beads is to add extra beads by splitting an edge. This

operation trivially sub-divides an edge into two edges of equal length. The only caveat is

that splitting an edge may cause the knot to no longer be in a safe position, even though

splitting an edge doesn’t change knot-type. Because Theorem 2 only ensures the knot-type
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remains unchanged in subsequent relaxations if the knot is in a safe position, splitting is not

allowed if safeness would be lost.

Splitting edges becomes more interesting if it is done automatically. A useful technique

is to check for stuck beads after a relaxation step, and then to split the associated edges in the

knot (while maintaining safeness). For efficiency reasons, we have found it best to perform

the check and splitting procedure every M relaxation steps, where M ≈ 10. Auto-splitting

in this way is interesting for two applications. The first is in finding a natural length for

different knot-types. For this we start with a reasonable initial configuration for the knot,

based on some natural metric. A good choice is a minimal-stick candidate in a minimal

energy configuration for the minimum distance energy (see Chapter 8 to see how these are

found), but many other choices would give similar results. The next step is to run the

normal dynamics using the two default forces with auto-splitting enabled. During the early

31 length = 23.4
number of beads = 15

63 length = 54.1
number of beads = 36

942 length = 56.8
number of beads = 36

Figure 7.16: Knots relaxed to a natural length using auto-splitting.

stages of the relaxation, many beads become stuck. However, as more beads are added from

splitting edges, fewer beads become stuck and the splitting eventually stops. Figure 7.16

shows three knots relaxed in this way. Not surprisingly, 63 is considerably longer than 31

(it takes more “rope” to tie). What is perhaps unexpected is that 942 is approximately

the same length as 63, even though its crossing number is three greater. This appears to

be related to 942 being a non-alternating knot. Non-alternating knots appear to have more

conformational freedom than alternating knots [BSS98b]; this is consistent with results found

by other groups [KBM+96].

A second application of auto-splitting is to combine it with bead deletion. This

technique is useful for knot simplification and recognition. Figure 7.17 shows the monster
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unknot once again simplified to a pentagonal knot (which must be the unknot). Phases of

relaxation with auto-splitting are alternated with phases of bead deletion. It can be seen

that before any beads are deleted, the relaxation proceeds slowly as it did in the example

shown in Figure 7.5. However, after some beads are deleted the simplification is quick.

We close this section with two less trivial examples of using the splitting and delet-

ing method for the purpose of knot recognition, and an example of where our methods

fail. Figure 7.18 shows a complicated unknotted “noose” from the paper of Ligocki and

Sethian [LS94].5 A difficult trefoil, also from [LS94], is shown in Figure 7.19. In both cases,

the relaxation proceeds quickly to a simple form where the knot type is easily recognized.

On a typical work station, the real time taken by the entire procedure is less than a minute

in each case. This is much faster than the times reported by Ligocki and Sethian for their

method. However, in all fairness, the problem being solved is different. Ligocki and Sethian

are interested in maintaining a strict physical basis for their dynamics, whereas here we are

simply interested in the problem of knot recognition.

The example of failure is shown in Figure 7.20 which shows one of the unknots that

lack n-waves from the paper of Ochiai [Och90]. The specific embedding was constructed

for use in the research presented in Huang, Kauffman, and Grzeszczuk [GHK97]. The knot

data was graciously provided to this author by Louis Kauffman. Even with the use of bead

tricks, this knot has foiled KnotPlot’s attempts to untie it. This failure might be due to an

intrinsic weakness in the methods presented here, or perhaps it could be that an insufficient

amount of computer time was expended on the case. Although they successfully untie the

Ochiai unknot, [GHK97] report that the procedure took 292,000 steps of their algorithm

and 107 hours of wall clock time. We have not run KnotPlot for more than a few hours on

this knot, and after that time the knot seems to remain in a quasi-stable state, with no net

simplification. Of course it is possible that the knot will reach a state where the obstruction

to simplification is removed. At that point the knot would quickly simplify. This was the

case when interactive methods were used for this knot. Using the push/pull rockets, it is

easy to untie this knot. One simply “drags” a strand around a part of the knot that is in

the way and the knot rapidly simplifies.

5Knot data provided courtesy of Terry Ligocki.
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T = 0, number of beads = 116

→
relax

↙
delete

T = 33, number of beads = 116

T = 33, number of beads = 16

→
relax

↙
delete

T = 66, number of beads = 24

T = 66, number of beads = 12

→
relax

↙
delete

T = 99, number of beads = 16

T = 99, number of beads = 5

→
relax

T = 132, number of beads = 5

Figure 7.17: Relaxation of the “monster” using bead tricks.
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T = 0, number of beads = 160

→
relax

↙
delete

T = 39, number of beads = 167

T = 39, number of beads = 58

→
relax

↙
delete

T = 78, number of beads = 98

T = 78, number of beads = 51

→
relax

↙
delete

T = 117, number of beads = 79

T = 117, number of beads = 25

→
relax

↙
delete

T = 156, number of beads = 42

T = 156, number of beads = 6

→
relax

T = 195, number of beads = 6

Figure 7.18: Relaxation of Nasty Unknot

133



T = 0, number of beads = 162

→
relax

↙
delete

T = 66, number of beads = 434

T = 66, number of beads = 143

→
relax

↙
delete

T = 132, number of beads = 344

T = 132, number of beads = 90

→
relax

↙
delete

T = 198, number of beads = 192

T = 198, number of beads = 34

→
relax

↙
delete

T = 264, number of beads = 72

T = 264, number of beads = 6

→
relax

T = 330, number of beads = 14

Figure 7.19: Relaxation of Nasty Trefoil
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Figure 7.20: Really nasty unknot that foils KnotPlot’s dynamics.
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Chapter 8

Applications

This chapter presents several applications of topological drawing and refinement to problems

in knot theory. Chapter 7 showed the effectiveness of our techniques in the knot recognition

problem. Those results, although interesting in their own right, are more significant from a

computational viewpoint rather than a mathematical one. In this chapter, we are generally

concerned with the use of topological drawing in new research in mathematics.

The first of these research areas is in finding minimal-stick candidates for a large num-

ber of knots. These results can be used to constrain theoretical discussions of stick number,

for example providing counter-examples. Our methods compare well to other experimen-

tal methods [Mei96], but less favourably to theoretical techniques [ABGW97] (when such

techniques are possible).

Also discussed in this chapter are relaxations using the symmetric energy [BSS98b]

that was defined in Section 3.5.1. To the author’s knowledge, these relaxations have not been

performed elsewhere. We find that the symmetric energy provides effective simplification of

knots from highly tangled states to states approaching the “canonical form”. In several cases,

the resulting configurations exhibit curious symmetries that, given the physical significance

of the symmetric energy, may indicate interesting directions for further research.

The next application shows the effective use of topological refinement to simplify hy-

perbolic knots with few ideal hyperbolic tetrahedra in their complements. Here we start with

knots in complex configurations, usually given by a long braid-word, and apply interactive

topological refinement. In one dramatic case, a knot simplifies from a 157 crossing projection
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down to a 13 crossing projection.

The final application of topological drawing is to the area of mathematical illustration.

It is hoped that this thesis itself provides a convincing evidence of the utility of our techniques,

as most of the illustrations in this thesis are produced using the methods described here.

8.1 Stick number experiments

Section 3.3.2 introduced the stick number problem for knots: what is the minimum number

of straight sticks required to form a representative of a given knot-type? Some results are

known from theoretical studies [Ran94, ABGW97] and experiments [Mei96]. We have used

KnotPlot to extend the range of known upper-limits on the value for the stick number for the

entire Rolfsen catalogue, (Appendix C of [Rol76]), a total of 249 proper knots and 130 proper

links. While these results do not contain any new values that are provably minimal stick rep-

resentatives, the existence of known upper-limits can be used to constrain theoretical studies

of stick numbers. It is conceivable that many of our minimal-stick candidates are in fact

minimal-stick representatives, however, we must wait until sufficiently powerful theoretical

methods are available before most of them can be proven to be so. It is unlikely that such an

advance will be forthcoming, since most knots (as crossing number increases) do not have any

special characteristics that allow the analysis to be manageable. Theoretical studies, as in

[ABGW97], have focussed on special classes of knots, such as torus knots or their connected

sums. These knots are exceptional in many ways, the stick-number of the “average” knot is

probably a much more difficult theoretical problem.

8.1.1 Method

Our method is quite straight-forward, and perhaps somewhat “brute-force” in comparison

to the manual manipulation technique of Meissen [Mei96]. KnotPlot could easily be used

manually for finding stick numbers since it does allow direct manipulation of a knot, one

bead at at time, while ensuring that the knot-type remains unchanged. Whatever tool is

used (Meissen used the KED software [Hun96]), finding stick numbers manually is exceedingly

tedious.

The technique used here to find stick-number candidates uses the “thermal” force
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T = 0, number of beads = 11 T = 240, number of beads = 11 T = 241, number of beads = 10

T = 242, number of beads = 9 T = 273, number of beads = 9 T = 274, number of beads = 8

Figure 8.1: Finding a minimal stick representative for 62.

together with “opportunistic” bead-deletion. Essentially, the following steps are applied in

sequence many times:

1. Randomly displace each bead in the knot a small amount using only the thermal force.

Since this uses the standard KnotPlot dynamics, this preserves knot-type.

2. Attempt to delete as many beads as possible, according to the technique described in

Section 7.3.3. This again preserves knot-type.

In our experiments, we have not been greatly concerned with efficiency, instead relying on

large amounts of (otherwise unused) computer time. The amount of computation necessary

for each candidate depends strongly on several KnotPlot parameters; for example, the mag-

nitude of the thermal force and the number of iteration steps between bead deletion phases,
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and the specific way the beads are deleted. Although we have attempted to find the best

settings for each of the parameters, this matter deserves more careful investigation.

8-stick 62, EMD = 879.2

Figure 8.2: Minimal stick 62 knot at a minimal EMD.

Figure 8.1 shows the procedure for a knot where the stick number is known from

theoretical studies. As in previous illustrations, T indicates the number of iteration steps.

The T = 0 is obtained directly from the knot catalogue representation for 62 (which has

82 beads) by deleting as many beads as possible. By T = 240, the knot has been “jiggled”

to a configuration where one more small displacement will allow one bead to be deleted.

After that bead has been deleted (T = 241), one more bead can immediately be deleted

(T = 242). Eventually, at T = 274 the knot has reached its minimal number of sticks.

The entire process, from T = 0 to T = 274, takes approximately five seconds on a typical

workstation.1 The example shown is a best case; a typical time would be approximately ten

times as long. This is still less than a minute of computation time for these simple knots. In

comparison, finding a minimal stick representation manually is likely to take far longer.

After a minimal stick candidate is found, it is worthwhile to take the time to minimize

the MD energy. This improves the embedding to make it more “presentable”. Also we will

see later in this chapter that interesting symmetries are often revealed when the knot is

brought to a minimal energy conformation. The result of this procedure is shown for the 62

knot in Figure 8.2.
1200 MHz IP22 processor (MIPS R4000/R4400).
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knot sticks
31 6?

41 7?

51 8?

52 8?

61 8?

62 8?

63 8?

71 9
72 9
73 9
74 9

knot sticks
75 9
76 9
77 9
81 10
82 10
83 10
84 10
85 10
86 10
87 10
88 10

knot sticks
89 10
810 10
811 10
812 10
813 10
814 10
815 10
816 9
817 9
818 9
819 8?

knot sticks
820 8?

821 9
Granny 8?

Square 8?

31]31]31 11 (10)
31]31]31 11 (10)

K4,5 10?

K5,6 13 (12)
K6,7 16 (14)
K7,8 19 (16)

K3,4]K3,4 13 (12)

Table 8.1: Provisional stick numbers for knots. A ? indicates that the
value is known to be best value possible (i.e. it is the stick number
of the knot). Values in parentheses are stick numbers known from
theoretical results.

8.1.2 Results

Our results for knots with a crossing number of eight or less, together with a few composite

knots and torus knots, are shown in Table 8.1. Meissen [Mei96] has independently found

stick numbers for some of these knots (Table 3.2); our numbers agree for all knots examined

in both studies. In the case of the seven and eight crossing prime knots, the numbers shown

are provisional. It is generally believed that for these knots the result cannot be improved.

Our method finds minimal stick representative for both the Granny knot and the Square

knot (eight sticks each), however, it fails for both versions of the connected sum of three

trefoils. According to the study in [ABGW97], these knots have a stick number of 10.

One interesting observation is that the non-alternating knots (819, 820, and 821) have

lower stick-numbers than do most of the other eight-crossing knots. In two cases this num-

ber is as small as the stick-number for a six-crossing knot. This result is consistent with the

observation made by others [KBM+96] that non-alternating knots have a greater conforma-

tional freedom than do alternating knots. Perhaps somewhat surprising, however, is the low

value for three of the alternating eight-crossing knots (816, 817, and 818). It is also curious

that these are the only alternating eight-crossing knots that have a Conway notation that

uses one of the basic polyhedra other than the 1? polyhedron.
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Sticks Alternating Non-alternating Total
9 4 5 9
10 26 3 29
11 11 0 11

Total 41 8 49

Table 8.2: Provisional stick-number results for the nine crossing knots.

Sticks Alternating Non-alternating Total
10 13 29 42
11 54 13 67
12 50 0 50
13 5 0 5
14 1 0 1

Total 123 42 165

Table 8.3: Provisional stick-number results for the ten crossing knots.
The single “problem” knot of 14 sticks is 1084.

Of the torus knots in Table 8.1, our method finds a minimal stick representative for

only the first five (31, 51, 71, 819, and K4,5), becoming progressively worse from K5,6 to K7,8.

It is possible that it is more difficult to find stick numbers for torus knots; the small amount

of evidence for this is that of the seven crossing knots, the torus knot 71 took by far the most

time to find a nine stick representative, requiring more than an hour of computation.

Tables 8.2 and 8.3 shows our provisional results for the nine-crossing and ten-crossing

knots, respectively. Again, the (provisional) stick-numbers are considerably lower for the

non-alternating knots, which become an increasingly larger fraction of all knots as crossing-

number increases. Most of the non-alternating nine-crossing and ten-crossing knots have a

stick number more typical of an alternating knot with a crossing-number two less.

Figure 8.3 shows one minimal-stick representative (820) and three minimal-stick can-

didates (77, 941, and 10140). Because the diagrams in Figure 8.3 are orthographic projections,

it is difficult to appreciate the true 3D placement of the beads. Appendix A has stereo-pairs

of all knots up to eight crossings, along with several other interesting knots. In those illus-

trations, it is easier to see that the displacements perpendicular to the plane are often quite

large in comparison to distances in the plane.

Several knots in the catalogue exhibit interesting symmetries when brought to a con-
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8-stick 820 9-stick 77

9-stick 941 10-stick 10140

Figure 8.3: Minimal-stick representatives and candidates.

142



along z-axis

along y-axis along x-axis

Figure 8.4: Minimal-stick candidate for 10124 viewed along its three principal axes.
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figuration that minimizes the minimum-distance energy EMD. For example, the minimal-stick

candidate for 10124 shown in Figure 8.4 exhibits a symmetrical projection in three mutually

orthogonal projections. Furthermore, the knot in Figure 8.4 has been aligned so that its

principal axes2 coincide with the coordinate axes. As shown in the figure, an orthographic

projection onto a plane perpendicular to any of these principal axes has bilateral or two-fold

rotational symmetry about the principal axis. In Figure 8.4, the z-axis is the principal axis

with the largest eigenvalue, and the y-axis has the smallest eigenvalue.

Another set of knots with intriguing symmetries after being brought into a minimum

EMD configuration and viewed along the principal axes are the three torus knots 31 (K2,3),

819 (K3,4), and K4,5. The stick number of these knots is known from theoretical stud-

ies [ABGW97] and our technique finds minimal-stick representatives. These knots are shown

in Figure 8.5. A complete catalogue of all knots and links found with these symmetries is

included in Appendix A.

2These are the eigenvectors of the inertia tensor, where the equal masses are located at the bead positions.
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K2,3 viewed along principal axis K2,3 rotated 90◦

K3,4 viewed along principal axis K3,4 rotated 90◦

K4,5 viewed along principal axis K4,5 rotated 90◦

Figure 8.5: Three minimal-stick torus knots in minimal EMD configuration.
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8.2 Relaxations using the symmetric energy

8.2.1 Method and results

We have performed relaxations using the symmetric energy [BSS98b] as an alternative to

KnotPlot’s standard dynamics. The symmetric energy was defined in Section 3.5.1 for the

continuous case; we have used a discrete approximation to the gradient of the symmetric

energy to implement a new force law in KnotPlot. This new force replaces the “electrical”

force of Equation 7.2 as the repulsive component. The “mechanical” force of Equation 7.1 is

used in conjunction with the symmetric energy force, with β = 0 to ensure linear springs.

31 length = 23.4
number of beads = 21

63 length = 57.0
number of beads = 54

942 length = 65.0
number of beads = 59

Figure 8.6: Knots relaxed to a natural length using auto-splitting under the symmetric
energy.

A similar technique to that previously seen in Section 7.3.3 was used for the production

of the catalogue of knots relaxed under the symmetric energy in Appendix A. That technique

led to the knot-diagrams in Figure 7.16 which exhibit a “natural-length”. For the experiments

using the symmetric energy, we again started with minimal-stick candidates for each knot-

type (each in a state of minimum EMD) and relaxed while auto-splitting until the knot

reached an equilibrium point. Although this method may appear ad hoc, it is a reasonable

approach given that no obvious technique for specifying initial configurations exists.

Figure 8.6 shows three of these relaxed knots for direct comparison to Figure 7.16,

which showed knots relaxed under KnotPlot’s standard dynamics. In Figure 8.6 the three

knots have been scaled by a constant factor so that the trefoil is the same length as the

trefoil in Figure 7.16. The distance of closest approach is smaller in the symmetric energy

case. This is to be expected as the symmetric energy force behaves as 1/r2 rather than the
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1/r6 of the electric force.

Figure 8.7 shows a plot of the symmetric energy ES(K) versus the average crossing

number ACN (K) for the knots in Appendix A. It is interesting that the data points lie

on a nearly straight line. Obviously, this would not be the case for knots in arbitrary

configurations, as the average crossing number has a lower bound equal to the crossing

number of the knot, and the symmetric energy goes to infinity for knots approaching self-

intersection. The only known theoretical relationship between the two quantities is that the

symmetric energy bounds the average crossing number, ES(K) ≥ 4πACN (K), as is shown

in [BS97, BSS98b]. In Figure 8.7, this would imply that all data points should lie to the left

of the line drawn. The linear relationship shown for the relaxed knots in the plot is therefore

somewhat unexpected, however, a similar linear relationship between a different knot energy

(thickness energy) and the average crossing number for knots relaxed under that energy have

been observed [KBM+96].

The symmetric energy appears to be equally good as KnotPlot’s standard dynamics

at untangling and simplifying knots, as Figure 8.8 shows. Other relaxations of tangled

messes can be seen as MPEG movies at the Symmetric Energy World Wide Web site (see

Appendix B for the address).

8.2.2 Achiral knots

Two knots in the catalogue relaxed to states that reveal interesting symmetries. The figure-

eight knot and the knot 83 each relax to conformations that exhibit rigid geometric achirality,

as shown in Figures 8.9 and 8.10, respectively. In each case a rotation about the indicated

axis by 180◦ maps the knot into its mirror image. This was not observed to happen for the

other achiral knots that were relaxed (for example 63).

It is interesting to view these knots along their three principal axes as we did before for

10124 and the three torus knots. Figures 8.11 and 8.12 show the (orthographic) projections

along each principal axis. Several new symmetries are now apparent. A rotation of 90◦ about

the y-axis, which is the principal axis with the largest moment of inertia, brings the knots

into their mirror images. Each of these knots then has two different axes about which a

rigid rotation maps the knot into its mirror image. The axis of rotation shown in Figures 8.9

and 8.10 is the bisector between the x and z principal axes.
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Symmetric Energy vs. Average Crossing Number
Average Crossing Number

SE3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.50

12.00

12.50

13.00

13.50

14.00

14.50

15.00

50.00 100.00 150.00 200.00 250.00

Figure 8.7: Symmetric energy versus average crossing-number of prime knots up to eight-
crossings relaxed under symmetric energy. The three non-alternating knots (819, 820, and
821) are indicated by open circles.
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T = 0, ES = 2597 T = 2, ES = 2407 T = 6, ES = 2183

T = 11, ES = 2005 T = 19, ES = 1814 T = 34, ES = 1592

T = 59, ES = 1392 T = 104, ES = 1196 T = 169, ES = 1002

T = 317, ES = 798 T = 798, ES = 600 T = 6918, ES = 403

Figure 8.8: Relaxation of the knot 52 under the symmetric energy, ES , shown at approxi-
mately equal steps in ES .
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⇒ ⇒

⇓

⇐ ⇐

Figure 8.9: Rigid geometric achirality of figure-eight knot, after relaxation under the sym-
metric energy.

⇒ ⇒

⇓

⇐ ⇐

Figure 8.10: Rigid geometric achirality of 83 knot, after relaxation under the symmetric
energy.
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x y z

Figure 8.11: Relaxed figure-eight knot viewed along principal axes.

x y z

Figure 8.12: Relaxed 83 knot viewed along principal axes.
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8.2.3 Visualizing the symmetric energy: knots as radiating tubes

The formulation of the symmetric energy due to Buck [BS97] conceives of a knot as a ra-

diating tube. In this model the tube is thought of as being a semi-transparent, diffusive

surface (something like cellophane) of a small radius r, inside of which (along the core of the

tube) lies the knot itself. Such an illumination model corresponds exactly to the computer

graphics notion of raytracing, in which light sources are generally not seen, but illuminate

surfaces notwithstanding. This correspondence allows us to create a direct visualization of

the symmetric energy for any knot conformation. Identical light sources are strung along

the core of the tube at roughly uniform intervals. Shadows are not considered partly for

the reason of efficiency, as this makes the raytracing much faster (typically there may be

several hundred light sources in one scene) and for the more important reason that shadows

are a second order effect, contributing a term of order r2 in the symmetric energy. Since the

symmetric energy is defined as the limit of the self-illumination as r → 0, the shadow term

vanishes.

Colour Plate 2 shows a collection of knots visualized in this way. In these images, the

knot is drawn with a tube of appreciable radius (since otherwise we wouldn’t see it), however,

the reader should bear in mind that the illumination model is strictly valid for a thin tube. In

fact, the illustrations in Colour Plate 2 shows us not only the symmetric energy, but also the

symmetric energy density along the tube. Regions of the tube that are bright are those areas

where more of the rest of the knot can be seen; i.e. the knot is bright near regions of close

approach, “extremities” glow dimly. This is especially evident in Colour Plate 2(e), which

shows Ligocki and Sethian’s “noose” seen in the last chapter (Figure 7.18). The tightly coiled

portion glows brightly, as if it were a heating element or a light bulb filament. The multi-

coloured pictures seen on the right hand side are links where each component is coloured

separately. Colour Plate 2(c) is a homage to Tait. He was probably the first to draw this

knot in the form shown, although in [Tai76] it wasn’t cabled as it is here.

High quality versions of all of these images, and many more besides, are available at

the previously mentioned WWW site. A complete exposition on knots as radiating tubes is

forthcoming in a paper by Buck, Simon, and the author of this thesis [BSS98b].
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8.3 Hyperbolic knot census

Perhaps the most extensive test of interactive topological refinement has been to the simpli-

fication of complicated knots appearing in Callahan, Dean, and Weeks study of hyperbolic

knots that have few ideal tetrahedra in their complement [CDW98]. It would go far beyond

the scope of this thesis to explain precisely what this means. Very briefly, if a knot is viewed

as living in S3 rather than R3, then the complement of a tubular neighbourhood of the knot

(i.e. “fatten” the knot much like the “smooth tube” pictures, and exclude these points) is a

compact three-manifold with torus boundary. For almost all knots (torus knots and satellite

knots are the exceptions), this three-manifold can be endowed with a hyperbolic metric of

constant curvature −1, more-over, there exists a canonical triangulation of this manifold

using ideal hyperbolic tetrahedra (ideal because their vertices are at infinity). Callahan,

Dean, and Weeks use these canonical triangulations to rank knots according to the number

of ideal tetrahedra in their complements. This study is interesting because it looks at knot

complexity from a completely different viewpoint, opposite to the way we normally look at

knots. In some ways it is more satisfying, because there exist powerful computational tools

(Weeks’ program SnapPea) that can construct the ideal triangulation directly. This is in

contrast to the difficulty in computing the crossing number of a knot, a problem for which

there are no known algorithms.

It turns out that the knot with the simplest complement, and therefore the simplest

knot from this standpoint, is the figure-eight knot. It is the only knot whose complement

consists of only two ideal tetrahedra. Callahan, Dean, and Weeks find that there are exactly

72 knots that have complements with six of fewer ideal tetrahedra. It would be unfair to spoil

the enjoyment of reading their paper3 and seeing the catalogue, so Figure 8.13 shows only

the first seven knots in order of increasing complexity. In the notation for the knots, the first

k2.1 k3.1 k3.2 k4.1 k4.2 k4.3 k4.4

Figure 8.13: The first seven knots in order of increasing complexity of their complement.
3At the time of writing of this thesis, the paper was still unpublished.
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number denotes the number of ideal tetrahedra in the canonical triangulation. These are the

only knots whose complements have fewer than five ideal tetrahedra (there are 22 with five

tetrahedra and 43 with six). Many of the knots found by [CDW98] already existed in the

standard catalogues; for example, k2.1, k3.2, k4.1, and k4.2 are the twist knots 41, 52, 61,

and 72 from the Rolfsen catalogue [Rol76], respectively. The second most complicated knot,

k3.1, is the pretzel knot with Conway word −2, 3, 7. The remaining two knots have a braid

word descriptions as (σ2σ1)8σ2
1 and (σ2σ4σ1σ3)3(σ1σ2σ3σ1σ2σ1)2. These are a from a class

of knots known as twisted torus knots [Dea97].

There seems to be little relationship between the complexity of a knot in this viewpoint

and the standard notion in terms of crossing number. k4.4 is quite complicated as a knot,

yet has a relatively simple complement. The knot 63 on the other hand, appears as k6.43 in

the catalogue in [CDW98], requiring six ideal tetrahedra in its complement.

The author of this thesis had the privilege of assisting the authors of the study by

constructing knot diagrams for them. About two dozen of the knots found in the study

already existed in the Rolfsen catalogue, so constructing diagrams for these was trivial.

About five knots were given by a Dowker code description. Producing diagrams for these

was also straightforward using the methods of Chapter 6. The remaining knots were twisted

torus knots, and generally had rather long descriptions as a braid-word. For these knots an

initial embedding was constructed directly from the braid word. Then most of the methods

of Chapter 7 were applied in an interactive fashion that would be difficult to duplicate. The

interaction involved primarily the use of push/pull rockets at opportune moments, when it

looked like a major simplification could take place if the relaxation were steered in a particular

direction. Often a major bead deletion phase would follow that would greatly increase the

speed of relaxation.

Overall, this approach worked well at simplifying the complicated knot descriptions.

Many of the knots could stand further work, perhaps using newly developed tools. The

exercise did reveal many weaknesses in the methods of topological drawing developed in this

thesis. In particular, better methods of cutting and splicing (while maintaining knot-type)

would make the task somewhat easier. There are a few cases where a dramatic reduction

in complexity was possible. Figure 8.14 shows before and after pictures of the knot k6.10.

During the refinement, this knot is reduced from a 157-crossing projection down to only
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13 crossings.4

4In the projection shown, this knot has 15 crossings. A rotation brings it to a projection with only
13 crossings. However, it looks nicer as drawn.
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Figure 8.14: Closed braid with word (σ−1
2 σ−1

4 σ−1
6 σ−1

8 σ−1
10 σ−1

12 σ−1
14 σ−1

16 σ−1
1 σ−1

3 σ−1
5 σ−1

7 σ−1
9 σ−1

11 σ−1
13 σ−1

15 )5×
(σ1σ2σ3σ4σ5σ6σ7σ8σ1σ2σ3σ4σ5σ6σ7σ1σ2σ3σ4σ5σ6σ1σ2σ3σ4σ5σ1σ2σ3σ4σ1σ2σ3σ1σ2σ1)2 and the
knot after simplification (centre).
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Chapter 9

Conclusion and future work

This thesis has demonstrated a reasonably complete approach to topological drawing, within

the limited domain of knot theory. We have shown how a wide range of constructions and

calculations in knot theory can be simplified using these methods. We have also seen how

these techniques can be applied to actual research problems in knot theory. Our results in

these areas compare well to others’ working in the field.

It is clear that we are still a long way from Roseman’s design goal of a general purpose

mathematician’s drawing tool [Ros92a, Ros92b]. Mathematicians draw and construct an

enormous variety of different objects; it is difficult to conceive of a truly complete drawing

tool. However, we believe that the research presented here is an important early step in

this direction. Perhaps in another decade, topological drawing will be as commonplace as

symbolic algebra packages are today.

The remainder of this chapter provides suggestions for future work. Some of these

are work in progress, others are more imaginative possibilities.

First of all, it would be interesting to study topological drawing techniques and user

interaction with a mathematically sophisticated audience, preferably people with a keen

interest in knot theory. Although user studies can be done in the abstract with idealized

experimental setups, this author believes that it would be more productive to study actual

knot enthusiasts doing real work using topological drawing. Whether such an audience could

be found is an open question.

User studies could also be done with people who don’t care much for mathematics,
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but like to tie knots. In this case the prospective user-base is nearly everybody. Even if

people don’t like tying knots, they are usually good at tying at least one knot. The skills

involved in doing these every day tasks (such as tying one’s shoes) are incredible. Can we

learn to implement something along these lines on a computer?

As for the computational aspects of this work, there are many enhancements that

could be made to improve the efficiency. In this thesis we have been more concerned with

exploring possibilities rather than maximizing performance. When this work began, there

was no anticipation that large-scale projects such as finding minimal stick candidates for

hundreds of knots would take place. More sophisticated techniques for finding candidates

could be developed and tested against known results from theoretical studies [ABGW97]. A

good metric of success would be if the system could rapidly find the theoretical stick numbers.

This would be evidence that in cases where nothing is known from theory, the stick number

results might provide suggestions for theorems.

Mathematically, there are many avenues for exciting research still open. The four-

dimensional aspects of KnotPlot are relatively undeveloped. Construction of arbitrary 4D

knots from movies is an easy extension. This combined with the relaxation of such knots in

R4 should yield interesting insights into the 4D world. As for 3D topological applications, an

interface between KnotPlot and SnapPea [Wee90] will be developed. Users of both programs

can benefit from this connection, KnotPlot users for the sophisticated calculation engine of

SnapPea, and SnapPea users for high-quality “input” and “output”.

In physical knot theory, relaxations under the symmetric energy deserve more study.

Are the curious symmetries found for various knots shown in Chapter 8 unique to the sym-

metric energy, or are they more universal, perhaps applying to any scale-invariant knot

energy? Other knot energies, not discussed in the thesis, are also of interest. In particular,

the thickness energy [BS97] could be studied, perhaps exploiting the hardware z-buffer on

computer graphics machines for real-time visualization of intersection curves for thick knots.

This leads to the study of real (i.e. rope, DNA, hair, extension cords) knots as physical

objects. As Kauffman [Kau91] correctly points out, a real knot is an extremely complicated

physical system.

Of course all of the above can be extended to other topological objects other than

knots. Knots have been a fruitful environment for these excursions into topological drawing.
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From this author’s perspective, we have only begun to study knots. Knots are primal shapes;

they are everywhere. They capture essential qualities of how objects are embedded in space.
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Published originally in 1993 in Japanese as Musubime riron to sono ōyō.
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Appendix A

Knot catalogues

A.1 Minimal stick candidates

A.1.1 Stereoscopic pairs

This section contains stereoscopic images of minimal stick representatives and candidates for
all prime knots up to eight crossings. Several other knots of interest and a few links are
also included. All knots are in minimal energy positions for the MD-energy, EMD and are
aligned so that the line of sight is along the principal moment of inertia axis with the largest
eigenvalue. See Section 3.5.1 for a definition of EMD. For each knot, the number of sticks is
given below the knot name. A star is used to indicate that the value is the stick-number of
the knot (so the knot shown is a representative).

To accommodate both “wide-eyed” and “cross-eyed” viewers, no occlusions are drawn
in the figures. To see the stereoscopic effect in “wide-eyed” mode, relax your eyes and fix
your gaze as if viewing a distant object. Shifting your attention to the paper, you should
notice multiple, out of focus images. Eventually, you should be able to merge the centre two
images into one. After a bit of concentration, your eyes will shift into focus on the paper,
and the image will appear to pop out. “Cross-eyed” viewing is similar, except that the right
eye focuses on the left-hand image, and the left eye on the right-hand. You may find your
finger useful in helping to initially cross your eyes. For best results in both cases, hold the
paper about 30cm from your eyes in good lighting conditions.

The minimal EMD configurations reveal interesting symmetries of several knots, in
particular 71 (the torus knot K2,7) and 85, and some links such as 62

1, 63
2 (the Borromean

rings), and 82
7. Many links (72

7 is an example) have a stick number that is trivially the
sum of the stick numbers of its components. These have been avoided as far as is obvious,
however, it is possible that by rearrangement some of the links shown may be brought into
a configuration where this would be true.

Appendix B gives a location on the World Wide Web where all the coordinate data
for these knots may be found.
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2

s = 10
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7
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EMD = 732.1 63
3

s = 9

EMD = 311.1
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12

s = 11

EMD = 2097.8 93
20

s = 11
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s = 8?

EMD = 1972.5

Granny
s = 8?
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A.1.2 Orthographic projections along principal axes

As in the previous section with the stereoscopic pairs, this section shows minimal stick
candidates and representatives in a minimal energy conformation for EMD, except that here
are shown orthographic projections along each of the principal axes of inertia. This catalogue
includes all knots that exhibit interesting symmetries (either bilateral or two-fold rotational)
when projected in this manner.

The knots have been aligned so that the y and z-axes correspond to the principal axes
with the smallest and largest eigenvalues, respectively. Numbers in parentheses indicate the
ratio of the eigenvalue associated with that axis to the smallest eigenvalue (associated with the
y-axis). The error on these ratios is estimated to be ±0.001, so within experimental error the
knots 31, 819, and K4,5 have two eigenvalues of equal value, as might be expected. Despite the
mystical and historical significance of the Borromean rings (63

2), it is probably a coincidence
that the ratio of the maximum to minimum eigenvalues of this special conformation is equal
to the Golden Ratio (to within experimental error). All the pictures are at the same scale in
that the minimum distance between any two non-adjacent edges is the same in each case.

A small figure included by each picture indicates the directions of the remaining axes,
as in

y
z , where the filled circle indicates that the x-axis points up out of the page. Similarly,

in
z

x the unfilled circle indicates that the y-axis points down into the page. This is obvious
since the x, y, and z-axes form a right-handed triad, however, filling the circles in this way
makes it easier to visualize the direction of the remaining axis.

y
z x (1.001)

z
x y x

y
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x y x
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z (1.046) Granny
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z

x (1.067)
z

x y x
y

z (1.068)
K4,5

A.2 Minimal symmetric energy knots and links

Colour Plate 3 shows images of all knots up to eight crossings, relaxed under the symmetric
energy, ES . The knots are visualized as radiating tubes as explained in Section 8.2.3, and
normalized such that each knot has the same length. Included with each image is the value
of the ES for that conformation. This data is plotted in Figure 8.7. Images of much higher
quality than these here are available at the Symmetric Energy World Wide Web site (see
Appendix B for the address).
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Appendix B

Supplementary material

A World Wide Web site exists that contains pointers to various data and supplementary
material of interest to readers of this thesis.

http://www.cs.ubc.ca/spider/scharein/thesis.html
This site contains vertex data for all the minimal stick candidates, MPEG movies of the
knot relaxations shown in the thesis, and a hypertext version of this thesis, as well as a
downloadable version in PostScript similar to this version.

High quality images and MPEG movies of knots as radiating tubes are available at
the Symmetric Energy Site:

http://www.cs.ubc.ca/spider/scharein/SE.html
All the knot vertex data for the symmetric energy catalogue in Appendix A is available at
this site.

Finally, a wide variety of images created with KnotPlot, some mathematical, some
“artistic”, and some not easily categorized are at the KnotPlot Site:

http://www.cs.ubc.ca/nest/imager/contributions/scharein/KnotPlot.html
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Bézier curve, 64
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Alexander’s theorem, 45
generators, 44

Buck, Gregory, 49
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Conway notation, 27–30, 85
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edge number, see stick number
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energy, 48–50
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invariants, 30
Lorenz, 52, 94
notation, 24
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tabulations, 24, 99–100
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Roseman, Dennis, 3, 4, 18

Simon, Jonathan, 49
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stick number, 34–36, 83

experiments, 143–149

Tait, Peter Guthrie, 47
tangle, 27

calculus, see Conway notation
integral, 27
rational, 28

tangle calculator, 85–89
Thistlethwaite, Morwen, 99
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Thomson, Sir William (Lord Kelvin), 47
trefoil, 21
Tutte, W. T., 107

writhe, 33, 61
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K2,2 K2,3 K2,4 K2,5

K3,3 K2,6 K2,7 K3,4

K2,8 K2,9 K2,10 K3,5

K2,11 K2,12 K4,4 K3,6

K2,13 K2,14 K3,7 K2,15

K4,5 K2,16 K3,8 K2,17

Colour Plate 1: All torus knots and links with crossing number less than 18.



(a) (b)

(c) (d)

(e) (f)

Colour Plate 2: Knots as radiating tubes.



31 ES = 76.9 41 ES = 109.0 51 ES = 121.5 52 ES = 135.7 61 ES = 157.4

62 ES = 164.2 63 ES = 166.3 71 ES = 167.3 72 ES = 182.3 73 ES = 182.1

74 ES = 179.7 75 ES = 192.0 76 ES = 187.7 77 ES = 197.6 81 ES = 202.4

82 ES = 208.3 83 ES = 206.4 84 ES = 217.7 85 ES = 218.2 86 ES = 217.2

87 ES = 222.2 88 ES = 211.9 89 ES = 224.8 810 ES = 225.4 811 ES = 218.1

812 ES = 223.7 813 ES = 213.3 814 ES = 226.7 815 ES = 237.0 816 ES = 238.2

817 ES = 239.8 818 ES = 252.8 819 ES = 181.0 820 ES = 193.4 821 ES = 197.3

Colour Plate 3: Normalized symmetric energy zoo.




